Course Content
অধ্যায় ২: ভেক্টর
0/14
পদার্থবিজ্ঞান ১ম পত্র HSC Physics Revision Note
About Lesson

বেগ-সময় লেখচিত্র 

Velocity-Time Graph

বেগ ও সময়

কোনো বস্তুর গতিকালে যদি তার বেগের মান বা দিক বা উভয়ই পরিবর্তিত হয়, অর্থাৎ বেগ যদি সময়ের অপেক্ষক হয় তাহলে সেই বেগকে বলা হয় অসমরবেগ। 

আমরা সচরাচর যে সব গতিশীল বস্তু দেখি তাদের বেগ অসমবেগ।

 একমাত্রিক গতির ক্ষেত্রে সময়ের অপেক্ষক হিসেবে বেগ v এর জন্য একটি সমীকরণ নির্ণয় করা যাক। যেহেতু

V = 𝑑𝑥𝑑𝑡,  তাই (3.10) সমীকরণকে t এর সাপেক্ষে অন্তরীকরণ করে অসমবেগ v পাই। 

 V = 𝑑𝑥𝑑𝑡𝑑𝑑𝑡

= 0 + 12m s-1 – 2 x ( 1.2 ms-2 )t 

:- v = 12m s-1 – (2.4m s-2 )t …… (3.11)

সময় ও বেগ সারণি

(3.11) সমীকরণে t = 0 s থেকে শুরু করে প্রতি 1 s অন্তর অন্তর t এর মান বসিয়ে t = 8 s পর্যন্ত বস্তুর বেগ হিসাব করে ৩.২ সারণিতে স্থাপন করা হলো।

9k=

বেগ-সময় লেখচিত্র

একটি ছক কাগজের X অক্ষের দিকে সময় t এবং Y-অক্ষের

দিকে বেগ v নিয়ে বেগ বনাম সময় লেখচিত্র অঙ্কন করা হয়।

2Q==
চিত্র :৩.৬

 এ লেখচিত্র থেকে যেকোনো সময় t তে বস্তুর বেগ v নির্ণয় করা যায়।

(৩.২) সারণির উপাত্তের জন্য v বনাম t লেখচিত্রটি ৩.৬ চিত্রে দেখানো হলো। চিত্র থেকে দেখা যাচ্ছে সময়ের সাথে সাথে বেগ v কমে যাচ্ছে। চিত্র থেকে আরো দেখা যায় এক সময় v শূন্য অতিক্রম করছে। এর থেকে বোঝা যায় এ সময় বস্তুটি তার বিপরীত যাত্রা শুরুর পূর্বে মুহূর্তের জন্য স্থির ছিল।

বেগ-সময় লেখচিত্র থেকে ত্বরণ নির্ণয়

V  বনাম t লেখচিত্র থেকে বস্তুর যেকোনো মুহূর্তের ত্বরণ নির্ণয় করা যায়। কোনো বক্ররেখার কোনো বিন্দুতে অঙ্কিত স্পর্শকের ঢালকেই ঐ বিন্দুতে বক্ররেখার ঢাল হিসেবে বিবেচনা করা হয়। v বনাম t লেখচিত্রে t এর সাপেক্ষে vএর অন্তরক 𝑑𝑣𝑑𝑡 দ্বারা এই ঢাল প্রকাশ করা হয়। 

যেহেতু a = 𝑑𝑣𝑑𝑡 তাই কোনো বিশেষ মুহূর্তে v বনাম t লেখচিত্রের ঢাল দ্বারা ঐ মুহূর্তের ত্বরণ a পাওয়া যায়। ৩.৭ চিত্রে আরেকটি বনাম লেখচিত্র দেখানো হলো। এটি কিন্তু ইতোপূর্বে আলোচিত বস্তুর সাথে সম্পর্কিত নয়। ৩-৭ চিত্রে সময়ে লেখচিত্রের P বিন্দুতে অঙ্কিত স্পর্শক APB এর ঢাল দ্বারা ঐ মুহূর্তের ত্বরণ a পাওয়া যায়,

𝑎=𝐵𝐶𝐴𝐶

2Q==
চিত্র :৩.৭

৩.৮। গতি বর্ণনায় অন্তরীকরণ ও যোগজীকরণের ব্যবহার : গতির সমীকরণ প্রতিপাদন 

Uses of Differentiation and Integration in describing Motion: Deduction of Equations of Motion

দ্বিতীয় অধ্যায়ে অন্তরীকরণ ও যোগজীকরণ নিয়ে বিস্তারিত আলোচনা করা হয়েছে। এ অধ্যায়ে আমরা অন্তরীকরণ ও যোগজীকরণের ধারণা রৈখিক গতি বর্ণনায় ব্যবহার করবো।

গতির সমীকরণ

Equations of Motion

সমত্বরণ গতি একটি সরল গতি। ধরা যাক, কোনো বস্তু একটি নির্দিষ্ট দিকে সমত্বরণে গতিশীল। বস্তুটি যে সরলরৈখিক পথে গতিশীল সে দিকে X-অক্ষ বিবেচনা করা যাক। কণাটি সমত্বরণে চলে বলে তার ত্বরণ a = ধ্রুবক ।

গতিশীল কোনো বস্তুর গতির ক্ষেত্রে গতির আদি শর্তাদি অর্থাৎ আদি অবস্থান xo ও আদি বেগ vo ছাড়াও গতির চারটি চলক আছে। এগুলো হলো অবস্থান x, বেগ, ত্বরণ a এবং গতিকাল বা সময় । এগুলো পরস্পর সম্পর্কিত। এ চারটি চলকের যে কোনো দুটি জানা থাকলে বাকি দুটি নির্ণয় করা যায়। এ জন্য চারটি সমীকরণ আছে, প্রত্যেকটি সমীকরণে আদি শর্তাদি ব্যতীত তিনটি চলক থাকে, যার দুটি জানা থাকলে তৃতীয়টি বের করা যায়। এ সমীকরণগুলোই গতির সমীকরণ নামে পরিচিত। নিম্নে এ সমীকরণগুলো প্রতিপাদন করা হলো।

প্রথম সমীকরণ: শেষ বেগ, ত্বরণ ও গতিকালের সম্পর্ক

V = Vo + at

ধরা যাক, একটি বস্তু X – অক্ষ বরাবর a সমত্বরণে গতিশীল। আরো ধরা যাক, সময় গণনার শুরুতে অর্থাৎ যখন 1 = 0 তখন এর আদি বেগ t অন্য যেকোনো সময় t তে এর বেগ vo 

যেহেতু সময়ের সাপেক্ষে বেগের অন্তরককে ত্বরণ বলে,

:-a = 𝑑𝑣𝑑𝑡 

(খ) দ্বিতীয় সমীকরণ : অবস্থান বা সরণ, শেষবেগ ও গতিকালের সম্পর্ক

𝑥=𝑥𝑜+𝑣𝑜+𝑣2𝑡, 𝑠=𝑣𝑜+𝑣2𝑡

ধরা যাক, একটি বস্তু X অক্ষ বরাবর সমরণে গতিশীল। আরো ধরা যাক, সময় গণনার শুরুতে অর্থাৎ যখন r = 0 তখন এর আদি অবস্থান xo এবং আদি বেগ vo । অন্য যেকোনো সময়তে t=t এর অবস্থান x এবং এর বেগ v গড় বেগের সংজ্ঞা থেকে আমরা জানি, ক্ষুদ্রাতিক্ষুদ্র সময় ব্যবধানের বেগ ও সময় ব্যবধানের গুণফলের সমষ্টি নিয়ে তাকে মোট সময় ব্যবধান দিয়ে ভাগ করে ঐ সময় ব্যবধানের গড় বেগ পাওয়া যায়।