Course Content
অধ্যায় ২: ভেক্টর
0/14
পদার্থবিজ্ঞান ১ম পত্র HSC Physics Revision Note
About Lesson

কোনো বস্তু যদি কোনো বিন্দু বা অক্ষকে কেন্দ্র করে বৃত্তাকার পথে গতিশীল হয়, তখন তার গতিকে বৃত্তাকার গতি বলে।

 

কৌণিক সরণ (Angular Displacement)

ধরা যাক, একটি বস্তু ব্যাসার্ধের বৃত্তাকার পথে ঘুরতে ঘুরতে কোনো এক সময়ে A অবস্থান থেকে B অবস্থানে পৌঁছালো (চিত্র : ৩.১৪)। বস্তুটির এ অবস্থানের পরিবর্তনকে আমরা দু’ভাবে বর্ণনা করতে পারি ।

Z
চিত্র : ৩.১৪

১. বস্তুটির বৃত্তের পরিধি বরাবর অতিক্রান্ত দূরত্ব AB = S দ্বারা চিহ্নিত করে। বৃত্তচাপ S-কে আমরা রৈখিক দূরত্ব বলতে পারি। যদিও বৃত্তচাপ 5 একটি বক্রপথ কিন্তু বৃত্তচাপ মাপার জন্য আমরা রৈখিক একক অর্থাৎ মিটার ব্যবহার করে থাকি বলে এটি রৈখিক দূরত্ব।

 ২. বস্তুটি বৃত্তের কেন্দ্রে যে কোণ উৎপন্ন করে তার সাহায্যে আমরা বস্তুটির অবস্থান বর্ণনা করতে পারি। এখানে ৪ কৌণিক সরণ বা কৌণিক দূরত্ব। পরিমাপের জন্য রেডিয়ান ব্যবহার করা হয়। একে ডিগ্রিতেও মাপা যেতে পারে। কোণকে রেডিয়ানে প্রকাশ করলে আমরা পাই,

Z
চিত্র : ৩-১৫

কোণ = চাপ/ব্যাসার্ধ

:-𝜃=𝑆𝑟

বা,𝑆=𝜃𝑟 

যেহেতু কোণ হচ্ছে চাপ/ব্যাসার্ধ, কাজেই কোণের মাত্রা হবে  

(3.43) সমীকরণ থেকে দেখা যায় যে, S = r হলে (চিত্র ৩.১৫), 𝜃𝑤 = 1 একক হয়। এ একককে রেডিয়ান (rad) বলা হয়। কোণ পরিমাপের এসআই একক হচ্ছে রেডিয়ান।

রেডিয়ানের সংজ্ঞা : কোনো বৃত্তের ব্যাসার্ধের সমান বৃত্তচাপ বৃত্তের কেন্দ্রে যে কোণ উৎপন্ন করে তাকে 1 রেডিয়ান বলে।

এখন কোনো বস্তু যদি সম্পূর্ণ বৃত্তাকার পথে একবার ঘুরে আসে তাহলে কেন্দ্রে উৎপন্ন কোণ

 𝜃=2𝜋𝑟𝑟 =পরিধি /ব্যাসার্ধ =2π radian

সুতরাং বৃত্তাকার পথে 1 বার ঘুরে আসা আর বৃত্তের কেন্দ্রে 2π rad কোণ অতিক্রম করা একই কথা।

কৌণিক বেগ (Angular Veloci) 

কৌণিক বেগের সংজ্ঞার আগে গড় কৌণিক বেগের সংজ্ঞা আলোচনা করা যাক।

গড় কৌণিক বেগের সংজ্ঞা : কোনো বিন্দু বা অক্ষকে কেন্দ্র করে বৃত্তাকার পথে চলমান কোনো বস্তুর যেকোনো সময় ব্যবধানে গড়ে প্রতি একক সময়ে যে কৌণিক সরণ হয় তাকে বস্তুটির গড় কৌণিক বেগ বলে । 

ব্যাখ্যা : ধরা যাক ∆𝑡 সময় ব্যবধানে কোনো বস্তুর কৌণিক সরণ হলো ∆𝜃 । (চিত্র : ৩:১৬) তাহলে

গড় কৌণিক বেগ 𝜔=∆𝜃∆𝑡

কৌণিক বেগ বা তাৎক্ষণিক কৌণিক বেগের সংজ্ঞা : সময় ব্যবধান শূন্যের কাছাকাছি হলে কোনো বিন্দু বা অক্ষকে কেন্দ্র করে বৃত্তাকার পথে চলমান কোনো বস্তুর সময়ের সাথে কৌণিক সরণের হারকে কৌণিক বেগ বলে । 

ব্যাখ্যা : ∆𝑡  সময় ব্যবধানে কোনো বস্তুর কৌণিক সরণ  ∆𝜃 হলে, কৌণিক বেগ

𝜔=𝑙𝑖𝑚∆𝑡→0∆𝜃∆𝑡

অর্থাৎ সময়ের সাপেক্ষে কৌণিক সরণের অন্তরককে কৌণিক বেগ বলে ।

বস্তু একক সময়ে বৃত্তের কেন্দ্রে যে কোণ উৎপন্ন করে তাই কৌণিক বেগের মান বা কৌণিক দ্রুতি ।

2Q==
চিত্র :৩.১৬

বৃত্তাকার পথটি সম্পূর্ণ একবার ঘুরে আসতে বস্তুটির যে সময় লাগে তাকে পর্যায় কাল বলে। কোনো বস্তুর পর্যায় কাল T হলে,

𝜔=2𝜋𝑡

বস্তু প্রতি সেকেন্ডে যতগুলো পূর্ণ ঘূর্ণন সম্পন্ন করে তাকে কম্পাঙ্ক বলে।

কৌণিক বেগের মাত্রা : কৌণিক বেগের মাত্রা হচ্ছে এর মাত্রা হচ্ছে কোন/সময়।

কৌণিক বেগের দিক :

রৈখিক বেগের ন্যায় কৌণিক বেগও একটি ভেক্টর রাশি। একটি ডানহাতি স্কুর সাহায্যে কৌণিক বেগের দিক নির্দেশ করা যায়। বৃত্তের কেন্দ্রে অভিলম্বভাবে একটি ডানহাতি ব্লু স্থাপন করে বৃত্তাকার পথে বস্তুটি যে ক্রমে (order) ঘুরছে সে ক্রমে স্কুটি ঘুরালে স্ক্রু যে দিকে অগ্রসর হবে সেটিই হবে কৌণিক বেগের দিক (চিত্র ৩.১৭ক)।

বই-এর সমতলে বৃত্তাকার পথে চলার সময় বস্তুটি যদি ঘড়ির কাঁটার গতির বিপরীত দিকে যায় তাহলে কৌণিক বেগের দিক হবে বৃত্তাকার পথের কেন্দ্রের মাঝ দিয়ে আঁকা অভিলম্ব বরাবর বাইরের দিকে তথা উপরের দিকে OP বরাবর (চিত্র : ৩-১৭খ)। আর যদি বস্তুটি ঘড়ির কাঁটার গতির দিকে ঘুরে তাহলে কৌণিক বেগের দিক হবে অভিলম্ব বরাবর ভেতরের দিকে তথা নিচের দিকে।

2Q==
চিত্র :৩.১৭

রৈখিক দ্রুতি ও কৌণিক দ্রুতির সম্পর্ক ” v=rш অর্থাৎ কোণের কোনো মাত্রা নেই ।

আমরা জানি, r ব্যাসার্ধের বৃত্তাকার পথে চলমান কোনো বস্তুর অতিক্রান্ত রৈখিক দূরত্ব s এবং কৌণিক দূরত্ব 𝜃 হলে

𝑆=𝑟𝜃

উভয় পক্ষকে সময়ের সাপেক্ষে অন্তরীকরণ করে পাই,

𝑑𝑠𝑑𝑡=𝑑𝑑𝑡(𝑟,𝜃)=𝑟𝑑𝜃𝑑𝑡

কৌণিক ত্বরণ (Angular Acceleration )

কৌণিক বেগের পরিবর্তন হলে কৌণিক ত্বরণ হয়। কৌণিক ত্বরণের সংজ্ঞার আগে গড় কৌণিক ত্বরণের সংজ্ঞা আলোচনা করা যাক ।

গড় কৌণিক ত্বরণের সংজ্ঞা : যেকোনো সময় ব্যবধানে কোনো বস্তুর গড়ে প্রতি একক সময়ে কৌণিক বেগের যে পরিবর্তন হয় তাকে গড় কৌণিক ত্বরণ বলে ।

ব্যাখ্যা : ∆t সময় ব্যবধানে কোনো বস্তুর কৌণিক বেগের পরিবর্তন যদি ∆ш  হয়, তাহলে গড় কৌণিক ত্বরণ,

𝛼=∆𝜔∆𝑡…… (3.52)

কৌণিক ত্বরণ বা তাৎক্ষণিক কৌণিক ত্বরণের সংজ্ঞা : সময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সাথে বস্তুর কৌণিক বেগের পরিবর্তনের হারকে কৌণিক ত্বরণ বলে।

  ব্যাখ্যা : ∆t  সময় ব্যবধানে কোনো বস্তুর কৌণিক বেগের পরিবর্তন   ∆ш হলে, কৌণিক ত্বরণ

𝜔=𝑙𝑖𝑚∆𝑡→0∆𝜃∆𝑡

কিন্তু 𝜔=𝑙𝑖𝑚∆𝑡→0∆𝜃∆𝑡হচ্ছে t এর সাপেক্ষে ш এর অন্তরক অর্থাৎ 𝑑𝜔𝑑𝑡

অর্থাৎ সময়ের সাপেক্ষে বস্তুর কৌণিক বেগের অন্তরককে কৌণিক ত্বরণ বলে।

CONTENT ADDED || UPDATED BY

 

কোনো বস্তু যখন সমদ্রুতিতে সরলপথে চলে তখন তার গতিকে সুষম গতি বলে। এ সুষম গতিতে বস্তুর কোনো ত্বরণ থাকে না। কেননা বেগের পরিবর্তনের হারকে ত্বরণ বলে। যেহেতু বেগ একটি ভেক্টর রাশি, তাই এর মান কিংবা দিক যেকোনো একটির অথবা উভয়টির পরিবর্তন হলেই বেগের পরিবর্তন হয় তথা ত্বরণ হয়। আবার বেগের মানই হচ্ছে দ্রুতি। সুষম গতির ক্ষেত্রে বস্তু সম্প্রতিতে চলে বলে বেগের মানের পরিবর্তন হয় না, আর সরল পথে চলে বলে বেগের দিকের পরিবর্তন হয় না, তাই সুষম গতিতে সরল পথে চলন্ত বস্তুর কোনো ত্বরণ থাকে না।

2Q==
চিত্র :৩.১৯

যখন কোনো বস্তু সমদ্রুতিতে বৃত্তের পরিধি বরাবর ঘুরতে থাকে তখন ঐ বস্তুর গতিকে সুষম বৃত্তাকার গতি বলে। ঐ রূপ গতিতে বস্তু সম্প্রতিতে। চলে বলে বস্তুর বেগের মানের কোনো পরিবর্তন হয় না, কিন্তু বেগের দিকের পরিবর্তন হয়। কেননা বৃত্তাকার পথের কোনো বিন্দুতে বেগের দিক বৃত্তের পরিধির উপর ঐ বিন্দুতে অঙ্কিত স্পর্শক বরাবর (চিত্র : ৩:১৯)। পরিধির বিভিন্ন বিন্দুতে স্পর্শকের অভিমুখ বিভিন্ন বলে বেগের দিক প্রতিনিয়ত পরিবর্তিত হচ্ছে অর্থাৎ বেগেরও পরিবর্তন হচ্ছে অবিরত। সুতরাং বস্তুর ত্বরণ হচ্ছে। তাই বৃত্তাকার পথে সমদ্রুতিতে চললেও বস্তুর ত্বরণ থাকে এ ত্বরণ বৃত্তাকার পথের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে ক্রিয়া করে বলে একে কেন্দ্রমুখী ত্বরণ বলা হয়।

 কেন্দ্রমুখী ত্বরণ : 

সময় ব্যবধান শূন্যের কাছাকাছি হলে বৃত্তাকার পথে চলমান কোনো বস্তুর সময়ের সাথে বৃত্তের ব্যাসার্ধ বরাবর এবং বৃত্তের কেন্দ্রের দিকে বেগের পরিবর্তনের হারকে কেন্দ্রমুখী ত্বরণ বলে । যেহেতু এ ত্বরণ ব্যাসার্ধ বরাবর বৃত্তের কেন্দ্রের দিকে ক্রিয়া করে এজন্য এ ত্বরণকে ব্যাসার্ধমুখী ত্বরণও বলে। আবার, এ ত্বরণ বেগের দিকের সাথে লম্ব বরাবর অর্থাৎ স্পর্শকের সাথে লম্বভাবে ব্যাসার্ধের দিকে ক্রিয়া করে বলে একে লম্ব ত্বরণও বলে।

কেন্দ্রমুখী ত্বরণের মান

৩.২০ ক চিত্রে সুষম বৃত্তাকার গতিতে ঘড়ির কাঁটার গতির দিকে গতিশীল একটি বস্তু দেখানো হলো। A বিন্দুতে এর বেগ 𝑣𝐴→ বৃত্তটির ঐ বিন্দুতে অঙ্কিত স্পর্শক বরাবর। ক্ষুদ্র সময়  ∆t পরে বস্তুটি B বিন্দুতে এলো। এ সময় এর বেগ 𝑣𝐵→ বৃত্তের B বিন্দুতে অঙ্কিত স্পর্শক বরাবর। ধরা যাক, কৌণিক সরণ ∆𝜃 খুবই ক্ষুদ্র।

৩.২০ খ চিত্র হচ্ছে একটি ভেক্টর রেখচিত্র যেখানে বেগ  𝑣𝐴→এবং 𝑣𝐵→  দেখানো হয়েছে।  এবং𝑣𝐵→  এর মধ্যবর্তী কোণও হচ্ছে ∆𝜃 । বেগের পরিবর্তন ∆𝑣→ =  𝑣𝐵→ –  𝑣𝐴→কে  𝑄𝑅→দ্বারা প্রকাশ করা হয়েছে। যেহেতু  ∆𝜃 কোণটি খুবই ছোট, কাজেইন ∆𝑣→  এর অভিমুখ   𝑣𝐴→এবং 𝑣𝐵→   উভয়ের সাথেই প্রায় লম্ব। অর্থাৎ A বিন্দুতে AO বরাবর তথা বৃত্তের কেন্দ্র বরাবর বস্তুটির বেগের পরিবর্তন বা ত্বরণ হয়। এ ত্বরণকে কেন্দ্রমুখী ত্বরণ বলা হয়।

৩.২০ খ চিত্রে, যেহেতু ∆θ কোণটি খুব ক্ষুদ্র, তাই ∆θ= চাপ/ব্যাসার্ধ 

2Q==
চিত্র :৩.২০

এখানে v হচ্ছে   𝑣𝐴→ এবং  𝑣𝐵→ এর মান। বস্তুটি সুষম দ্রুতিতে ঘুরছে বলে উভয় মানই সমান।

এখন কেন্দ্রমুখী ত্বরণ a হলে,

𝑎= 𝑙𝑖𝑚∆𝑡→0

এ কেন্দ্রমুখী ত্বরণের দিক বৃত্তের কেন্দ্রের অভিমুখে।

(3.55) সমীকরণ থেকে দেখা যায় যেকোনো দৃঢ় বস্তুর কোনো কণার কেন্দ্রমুখী ত্বরণ তার কৌণিক বেগ ও কেন্দ্র থেকে দূরত্বের উপর নির্ভর করে। কোনো কণার কেন্দ্রমুখী ত্বরণ তার কৌণিক বেগের বর্গের সমানুপাতিক এবং ঘূর্ণন কেন্দ্র থেকে দূরত্বের সমানুপাতিক। যেহেতু কোনো দৃঢ় বস্তুর সকল কণার কৌণিক বেগ সমান, সুতরাং যে কণা কেন্দ্র থেকে যত বেশি দূরত্বে থাকবে তার কেন্দ্রমুখী ত্বরণও তত বেশি হবে ।