Course Content
অধ্যায় ১০: সেমিকন্ডাক্টর ও ইলেক্ট্রনিক্স (Semiconductors and Electronics)
0/16
অধ্যায় ১১: পরমাণুর মডেল এবং নিউক্লিয়ার পদার্থবিজ্ঞান (Atomic Models and Nuclear Physics)
0/13
পদার্থবিজ্ঞান ২য় পত্র HSC Physics Revision Note
About Lesson

১। ডেসিমেল বা দশমিক পদ্ধতি (Decimal System)

আমরা যে সংখ্যা বা নম্বর পদ্ধতির সাথে বেশি পরিচিত তা হলো ডেসিমেল বা দশমিক নম্বর পদ্ধতি। এই পদ্ধতিতে দশ ডিজিট বা অঙ্ক রয়েছে যার মাধ্যমে এই পদ্ধতির সকল সংখ্যা লেখা যায়। এসব ডিজিট হচ্ছে 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 । ডেসিমেল পদ্ধতিতে 9 এর চেয়ে বড় কোনো সংখ্যা লিখতে হলে দুই বা ততোধিক ডেসিমেল ডিজিট সংযুক্ত করতে হয় বা মিলাতে হয়। উদাহরণ হিসাবে আমরা যদি 9 এর পরবর্তী বড় সংখ্যা দশ লিখতে চাই তাহলে আমাদের এই পদ্ধতির দ্বিতীয় সংখ্যা । এর পর প্রথম সংখ্যা 0 লিখতে হয়। অর্থাৎ 10 লিখতে হয়। একভাবে আমরা 11 12 13 ………. 19 ইত্যাদি লিখতে পারি। 19 এর বড় কোনো সংখ্যা লিখতে আমরা তৃতীয় ডিজিট 2 এর পর প্রথম, দ্বিতীয় তৃতীয়, চতুর্থ ইত্যাদি ডিজিট লিখে 20, 21, 22 …… ইত্যাদি লিখতে হয় । এভাবে আমরা 99 পর্যন্ত লিখে থাকি। 99 এর পরের সংখ্যা লিখতে গেলে আমাদের তিনটি ডিজিট পাশাপাশি লিখতে হয় এবং আমরা একশ লিখি এভাবে 100 অর্থাৎ দ্বিতীয় ডিজিটের পর দুটি প্রথম ডিজিট লিখতে হয়। এভাবে আমরা যত বড় ইচ্ছে সংখ্যা লিখতে পারি। ডেসিমেল পদ্ধতির বেস বা ভিত্তি হলো 10 (দশ)। কোনো নম্বর পদ্ধতির বেস হলো ঐ নম্বর পদ্ধতির মোট ডিজিট সংখ্যা। এই পদ্ধতিতে ডিজিট দশটি তাই এর বেস 10।

উদাহরণ : ডেসিমেল পদ্ধতিতে 1967 কে নিম্নোক্তভাবে প্রকাশ করা যায়।

1967 = 1000+ 900 +60 +7

  = 1 x 103 +9 × 102 + 6 x 101 +7 x 100

0.1967 = 1 x 10-1+ 9 x 10-2+6x 103+7 × 10-4

এবং 26.296 = 2 x 101 + 6 x 100 + 2 x 10-1 + 9 × 10-2 + 6 x 10

২। বাইনারি নম্বর পদ্ধতি (Binary Number System)

বাইনারি নম্বর পদ্ধতিতে কোনো সংখ্যাকে বোঝাতে মাত্র দুটি ডিজিট 0 এবং 1 ব্যবহৃত হয়। এই পদ্ধতিতে 1 এর বড় কোনো সংখ্যা লিখতে হলে । এর পরে 0 বা 1 দিতে হয়। যেমন 2 লিখতে হলে 10 লিখতে হয় । 3 লিখতে হলে 11 হিসাবে। 10 কে পড়তে হয় এক শূন্য (one zero) এবং 11 কে পড়তে হয় এক-এক ( one-one)। তিন লেখার পর বাইনারি ডিজিট শেষ হয়ে যায়। সুতরাং এরপর চার লিখতে হলে আমাদের লিখতে হয় দশমিক পদ্ধতিতে যেমন 1 এর পর দুটি শূন্য দিয়ে লেখা হয়। সুতরাং বাইনারি পদ্ধতিতে 4 লিখতে আমাদের দ্বিতীয় ডিজিট 1 এর পর প্রথম ডিজিট ( দুইবার লিখতে হয়। সুতরাং বাইনারি পদ্ধতিতে 4 (চার) লিখতে হয় 100 হিসাবে। পড়তে হয় এক-শূন্য শূন্য। 5 সমতুল বাইনারি সংখ্যা হলো 101।

নিচের সারণিতে ডেসিমেল নম্বরের সমতুল্য বাইনারি নম্বর দেখানো হলো।

সারণি 10.1: ডেসিমেল ও বাইনারি সংখ্যার সমতুল্যতা।

 

ডেসিমেল নম্বর বাইনারি নম্বর
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

 

বাইনারি সংখ্যায় বেস হলো 2। সুতরাং যে কোনো বাইনারি সংখ্যাকে নিচের মতো ডেসিমেল নম্বরে প্রকাশ করা যায়।

(111)2 = 1 x 22 + 1 x 21 + 1 x 20

=4+2+1=7

সুতরাং ( 111 )2 = (7)10

1001 = 1 × 23 + 0 x 22 + 0 x 21 + 1 x 20

=8+0+0+1=9

সুতরাং ( 1001)2 = (9)10

বিট (Bit) : বাইনারি সংখ্যা পদ্ধতির 0 এবং 1 এই দুটি মৌলিক ডিজিটকে বিট বলে।

ৰাইট (Byte) : আটটি বিটের গ্রুপ নিয়ে গঠিত শব্দকে বাইট বলা হয়। এক বাইট সমান এক ক্যারেক্টর (character.)

8 bit = 1 byte

1024 byte = 1 Kilobyte (KB)

1024 Kilobyte = 1 Megabyte (MB) 

1024 Megabyte = 1 Gigabyte (GB)