Course Content
অধ্যায় ১০: সেমিকন্ডাক্টর ও ইলেক্ট্রনিক্স (Semiconductors and Electronics)
0/16
অধ্যায় ১১: পরমাণুর মডেল এবং নিউক্লিয়ার পদার্থবিজ্ঞান (Atomic Models and Nuclear Physics)
0/13
পদার্থবিজ্ঞান ২য় পত্র HSC Physics Revision Note
About Lesson

দুটি বিন্দু আধানের মধ্যবর্তী আকর্ষণ বা বিকর্ষণ বল সম্পর্কে বিজ্ঞানী কুলম্ব একটি সূত্র বিবৃত করেন। একে কুলম্বের সূত্র বলে।

সূত্র : নির্দিষ্ট মাধ্যমে দুটি বিন্দু আধানের মধ্যে ক্রিয়াশীল আকর্ষণ বা বিকর্ষণ বলের মান আধানদ্বয়ের গুণফলের সমানুপাতিক, এদের মধ্যবর্তী দূরত্বের বর্গের ব্যস্তানুপাতিক এবং এই বল আধানদ্বয়ের সংযোজক সরলরেখা বরাবর ক্রিয়া করে।

ধরা যাক, A ও B বিন্দুতে অবস্থিত দুটি আধানের পরিমাণ যথাক্রমে q1 ও q2 এবং এদের মধ্যবর্তী দূরত্ব d [চিত্র ২.১] ।

9k=
চেয়ে :২.১

এদের মধ্যে ক্রিয়াশীল আকর্ষণ বা বিকর্ষণ বলকে স্থির তড়িৎ বল বা কুলম্ব বল বলে এবং এ বলের মান F হলে, কুলম্বের সূত্রানুসারে,

𝐹∝𝑞1𝑞2𝑑2

𝐹=𝐶𝑞1𝑞2𝑑2

এখানে C একটি সমানুপাতিক ধ্রুবক যার মান রাশিগুলোর একক এবং বিন্দু আধানদ্বয়ের মধ্যবর্তী মাধ্যমের প্রকৃতির উপর নির্ভর করে। এ ধ্রুবককে অনেক সময় কুলম্ব ধ্রুবক বলা হয় ।

আধানের একক : কুলম্ব

এককের আন্তর্জাতিক পদ্ধতি অর্থাৎ System International (SI) অনুযায়ী তড়িৎ প্রবাহের একক অ্যাম্পিয়ার (A)-কে মৌলিক একক হিসেবে নির্ধারণ করা হয়েছে। আধানের এস. আই একক হচ্ছে কুলম্ব (C)। অ্যাম্পিয়ার থেকে কুলম্বের সংজ্ঞা দেয়া হয়।

কোনো পরিবাহীর মধ্য দিয়ে এক অ্যাম্পিয়ার (1A) প্রবাহ এক সেকেন্ড (1s) চললে এর যে কোনো প্রস্থচ্ছেদ দিয়ে যে পরিমাণ আধান প্রবাহিত হয় তাকে এক কুলম্ব (1C) বলে।

:- 1C = 1A x 1s

সুতরাং 40 কুলম্ব আধান বলতে আমরা বুঝি কোনো পরিবাহীর মধ্য দিয়ে এক অ্যাম্পিয়ার প্রবাহ 40 সেকেন্ড চললে এর যে কোনো প্রস্থচ্ছেদ দিয়ে যে পরিমাণ আধান প্রবাহিত হয় তা। 

শূন্যস্থানে কুলম্বের সূত্র

corner এস. আই এককে বলকে নিউটন (N), দূরত্বকে মিটার (m) এবং আধানকে কুলম্ব (C)-এ পরিমাপ করলে কুলম্বের সূত্র (2.1) এর সমানুপাতিক ধ্রুবক C এর মান শূন্যস্থান (vacuum) এর জন্য পাওয়া যায়,

C= 9 x 109 Nm² C-2

এস. আই পদ্ধতিতে এই সমানুপাতিক ধ্রুবককে লেখা হয়,

𝐶 =14𝜋𝜀𝑜

এই ধ্রুবককে দেখতে আপাতদৃষ্টিতে জটিল মনে হলেও একে এরূপে প্রকাশ করা হয় কারণ তাহলে তড়িৎ চুম্বক বিজ্ঞানের অন্যান্য গুরুত্বপূর্ণ সূত্র ও সমীকরণগুলোর রূপ সরল হয়।

:. 𝐶 =14𝜋𝜀𝑜 =9 x 109 Nm2C-2   (2.1)

এখানে ∈𝑜 হচ্ছে একটি ধ্রুব সংখ্যা যাকে শূন্যস্থানের ভেদনযোগ্যতা (permittivity of free space) বলে। এর পরিমাপকৃত মান হলো,

∈𝑜 = 8.854 × 10-12 C2 N-1 m-1  (2.2)

সুতরাং শূন্যস্থানের জন্য কুলম্বের সূত্রের (সমীকরণ 2.1) রূপ হলো,

𝐹=14𝜋∈𝑜 𝑞1𝑞2𝑑2