ডেসিমেল থেকে বাইনারিতে রূপান্তর Transformation from Decimal to Binary
ডেসিমেল থেকে বাইনারি নম্বরে রূপান্তর
আমরা জানি ডেসিমেল পদ্ধতির বেস হলো 10 এবং বাইনারি পদ্ধতির বেস হলো 2। ডেসিমেল পদ্ধতি থেকে বাইনারি পদ্ধতিতে রূপান্তরের দুটি ধারা হলো-
(১) ডেসিমেল নম্বরকে 2 দ্বারা বার বার ভাগ করতে হবে যতক্ষণ না ভাগফল শূন্য হয়।
(২) ভাগ শেষ বা অবশিষ্টকে উল্টো দিক থেকে পরপর পাশাপাশি সাজিয়ে বাইনারি নম্বর পাওয়া যাবে।
নিচের উদাহরণটি লক্ষ্য কর।
গাণিতিক উদাহরণ ১০.৩। ডেসিমেল নম্বর 45-কে বাইনারিতে রূপান্তর।
ভাগ | ভাগফল | ভাগশেষ |
---|---|---|
45÷2 22 ÷ 2 11÷2 5÷2 2÷2 1 ÷2 |
22 11 5 2 1 0 |
1 0 1 1 0 1 |
সমতুল বাইনারি নম্বর হলো অবশিষ্ট সংখ্যাগুলো নিচ থেকে উপরের দিকে অর্থাৎ 101101 |
সুতরাং, ( 45 )10 = (101101 )2
ৰাইনারি নম্বর থেকে ডেসিমেল নম্বরে রূপান্তর
বাইনারি থেকে ডেসিমেলে রূপান্তর করতে হলে প্রত্যেকটি ডিজিটের স্থানীয় মানকে 2 এর সূচক হিসাবে লিখতে হবে। কোনো ডিজিটের ডান পাশে যতটি ডিজিট থাকবে ডিজিটকে 2 এর তত সূচক দিয়ে গুণ করতে হবে। এভাবে প্রত্যেকটি ডিজিটকে 2 এর সূচক দিয়ে গুণ করে যোগ করে ডেসিমেলের মান পাওয়া যায় এবং ভগ্নাংশের ক্ষেত্রে 2-1, 2-2, 2-3 ইত্যাদি দিয়ে প্রথম থেকে পরপর ক্রমান্বয়ে করে গুণফলকে যোগ করে ডেসিমেলের মান পাওয়া যায়।
গাণিতিক উদাহরণ ১০.২ : ( 101001 )2 কে ডেসিমেল নম্বরে রূপান্তর কর।
(101001)2 = 1 x 25+0x24+1 x 23+0x22+0x21+ 1x 20 =32+0+8+0+0+1
=41 (101001)2
=(41)10