| Please check the examination details below before entering your candidate information | | | | | | | | | | | |---|-------------------|--------------------------------|--|--|--|--|--|--|--|--| | Candidate surname | | Other names | | | | | | | | | | | Caratus Niverland | Con didata Numahan | | | | | | | | | | Pearson Edexcel
International GCSE (9–1) | Centre Number | Candidate Number | | | | | | | | | | 3–5 June 2020 | | | | | | | | | | | | Time: 3 hours | Paper R | Paper Reference 4CP0/02 | | | | | | | | | | Computer Scie | nce | | | | | | | | | | | Paper 2: Application of | | onal Thinking | | | | | | | | | | You must have: A computer workstation with appropriate programming language code editing software and tools, including interpreter/compiler, CODES folder containing code and data files, pseudocode command set (enclosed) | | | | | | | | | | | #### Instructions - Use black ink or ball-point pen. - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions requiring a written answer in the spaces provided there may be more space than you need. - Only one programming language (Python, C# and Java) must be used throughout the test. - Carry out practical tasks on the computer system and save new or amended code using the name given in the question with the appropriate file extension. - Do not overwrite the original code and data files provided to you. - You must **not** use the internet during the test. #### Information - The total mark for this paper is 80. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - This paper covers Python, C# and Java. - The CODES folder in your user area includes all the code and data files you need. - The invigilator will tell you where to store your work. #### Advice - Read each question carefully before you start to answer it. - Save your work regularly. - Check your answers if you have time at the end. Turn over ▶ ### Answer all questions. Answer the questions requiring a written answer in the spaces provided. Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . Carry out practical tasks on the computer system and save new or amended code using the name given with the appropriate file extension. Use only ONE programming language throughout the examination. Indicate the programming language that you are using with a cross in a box \boxtimes . | | | C# | × | Ja | ava | × | Python | X | | |-------------|-----|---|---------|---------|---------------------|-----|--------|---|-----| | • | · | ograms make u
hich one of the | | | | | | | (1) | | × | A | add | | | | | | | | | \boxtimes | В | divide | | | | | | | | | × | C | equals | | | | | | | | | X | D | modulus | | | | | | | | | (b) State | the | values used by | the Boo | lean da | ata ty _l | pe. | | | (1) | | c) Open Q01c in the code editor. | | |--|-------------| | The program should multiply two integers. | | | There are three errors in the code. | | | Amend the code to correct the errors. | | | Save your amended code as Q01cFINISHED with the correct file extensio | n for the | | programming language. | | | N State what is meant by the term 'yeriable' | (3) | | d) State what is meant by the term 'variable'. | (1) | | | | | e) Ayesha has written a program that calculates the sum of a set of numbers | | | Open Q01e in the code editor. | | | Answer these questions about the code. | | | (i) Identify the line number where the code includes a logic operator. | (1) | | (ii) Identify the line number where a subprogram definition starts. | (1) | | (iii) Identify the name of a numeric variable. | (1) | | | | | (iv) Identify the name of a string variable. | (1) | | | = 10 marks) | - 2 Rama wants some computer programs for his daughter, Ayomi. - (a) Rama wants a program to calculate the area of a triangle. (area of a triangle = $\frac{1}{2}$ base x height) This pseudocode contains the logic required to create the program. 1 # Initialise variables 2 - 3 SET base TO 50 - 4 SET heightChk TO TRUE 5 6 # Print prompt and take input from user 7 - **8** WHILE heightChk DO - **9** SEND "Enter the height (between 1 and 100): "TO DISPLAY - **10** RECEIVE height FROM (INTEGER) KEYBOARD - **11** IF (height >= 1 AND height <= 100) - **12** THEN heightChk = FALSE - **13** END IF - **14** END WHILE 15 16 # Calculate and print out values **17** **18** SET area TO 0.5 * base * height 19 - 20 SEND ("Base of triangle is: ", base) TO DISPLAY - 21 SEND ("Height of triangle is: ", height) TO DISPLAY - 22 SEND ("Area of triangle is: ", area) TO DISPLAY Write a program to implement the logic in the pseudocode. Open **Q02a** in the code editor. You must use the structure given in **Q02a** to write the program. Do not add any further functionality. Save your code as **Q02aFINISHED** with the correct file extension for the programming language. (10) (b) Ayomi wants a program that will calculate the number of fence panels required to surround building sites such as the one shown in the diagram (not to scale). Each building site is a rectangle. Each fence panel is 1 metre long. A gap of 4 metres is needed to access each site. The location of the gap is not significant. The user will input the length and width of the building site as whole numbers of metres. The program will output the minimum number of full panels needed. **Q02b** provides a structure for the program. Open Q02b in the code editor. Write the program. You must use the structure given in **Q02b** to write the program. Do not add any further functionality. Save your code as **Q02bFINISHED** with the correct file extension for the programming language. (7) (Total for Question 2 = 17 marks) | 3 | | al encryption algorithms have been developed. ate what is meant by the term 'encryption'. | (1) | |---|---------|--|-----| | | (b) Gi | ve one reason why data may need to be encrypted. | (1) | | | (c) (i) | Perform a Rail Fence cipher encryption of the text COMPUTATIONAL using a key of 4. | | | | | Show your working. | (4) | Encrypted text: | | | (ii) Explain one reason why the Rail Fence cipher is a weak encryption algorithm | (2) | |---|-------| | | | | | | | (Total for Question 3 = 8 m | arks) | - **4** Gianluca is a schoolteacher. He is in charge of a year group of pupils. - (a) He has started to create a program to analyse test results. Open **Q04a** in the code editor. Amend the code to complete the 'if statement' used to produce the outputs described in this table. | Condition | Output text | | | | | | | | | |---|--|--|--|--|--|--|--|--|--| | English test score was less than 40;
Maths test score was less than 50 | Student failed both tests | | | | | | | | | | English test score was less than 40 or
Maths test score was less than 50 | Student failed one test | | | | | | | | | | English test score was at least 80;
Maths test score was at least 85 | Student passed both tests with distinction | | | | | | | | | | Other conditions | Student passed both tests | | | | | | | | | Do not add any further functionality. Save your code as **Q04aFINISHED** with the correct file extension for the programming language. (6) (b) Gianluca has started to create a program to analyse pupil attendance. He wants to use a menu system with subprograms. Open **Q04b** in the code editor. The program must include subprograms to: - display the **names** of students whose percentage attendance was less than 75% - count and display the **number** of students whose percentage attendance was 90% or higher. Complete the program code to implement these requirements using the structure given in **Q04b**. Do not add any further functionality. Save your code as **Q04bFINISHED** with the correct file extension for the programming language. **(7)** (Total for Question 4 = 13 marks) **5** Cerys Jones is the manager of a shop that sells electrical goods. She is creating a stock control program. (a) Each item of stock will have a ten-character code. Each code consists of three parts. | Part | Description | | | | | | | | |-------------------|---|--|--|--|--|--|--|--| | Characters 1 to 3 | Uppercase letters | | | | | | | | | Characters 4 to 9 | Numbers between 1 and 9 inclusive | | | | | | | | | Character 10 | 'e' or 'o' indicating whether the sum of the numbers is even or odd | | | | | | | | WAS1234560, FDG232324e and VAC129222e are valid codes. All codes need to be validated. Complete the table to show **two** additional validation tests. For each test, give **one** example of erroneous data. The example that you give should fail **only** that test. (4) | Validation test | Erroneous data | |-----------------------------------|----------------| | Is the last character 'o' or 'e'? | ABC654321v | | | | | | | - (b) Cerys will need an algorithm to search the table of stock data. - (i) State **two** advantages of using a linear search algorithm rather than a binary search algorithm. | 1 | 1 |
 |---|---|------|
 | 2 |) |
 | (ii) State two disadvantages of using a linear search algorithm rather than a binary search algorithm. | a
(2) | |-----|---|---------------| | 1 | | | | | | | | 2 | | | | | | | | (c) | Cerys will use functions and procedures in her program. | | | | (i) One similarity between a function and a procedure is that they are both subprograms. | 1 | | | State two other similarities. | (2) | | 1 | | (2) | | | | | | 2 | | | | | | | | | (ii) Explain one difference between a function and a procedure. | | | | | (2) | | | | | | | | | | | | | | | /Tatalfan Oatian F | . 12 maules | | | (Total for Question 5 = | I Z III arks) | QUESTION 6 BEGINS ON THE NEXT PAGE. **6** Farshia is the regional manager for an insurance company. She manages a team of sales staff. She wants a program to analyse the performance of her team over a number of months. Test data has been included in the code. Open **Q06** in the code editor. Write a program to: - calculate and display the total sales made by each member of the team - calculate and display the total sales made by the whole team - display the first name, last name and the total sales made by the two members of the team with the highest total sales. (Ignore the possibility of two or more members of the team having the same total sales.) Your program should function correctly even if the number of months or number of members of the team is changed. Save your code as **Q06FINISHED** with the correct file extension for the programming language. (20) You may use this space for planning / design work. (Total for Question 6 = 20 marks) **TOTAL FOR PAPER = 80 MARKS** # Pearson Edexcel Level 1/Level 2 International GCSE (9-1) # 3-5 June 2020 Paper Reference 4CP0/02 # **Computer Science** **Component 2** **Pseudocode command set** # **Resource Booklet** Do not return this resource booklet with the question paper. Turn over ▶ #### **Pseudocode command set** Questions in the written examination that involve code will use this pseudocode for clarity and consistency. However, students may answer questions using any valid method. #### **Data types** **INTEGER** **REAL** **BOOLEAN** **CHARACTER** #### **Type coercion** Type coercion is automatic if indicated by context. For example 3 + 8.25 = 11.25 (integer + real = real) Mixed mode arithmetic is coerced like this: | | INTEGER | REAL | |---------|---------|------| | INTEGER | INTEGER | REAL | | REAL | REAL | REAL | Coercion can be made explicit. For example, RECEIVE age FROM (INTEGER) KEYBOARD assumes that the input from the keyboard is interpreted as an INTEGER, not a STRING. #### **Constants** The value of constants can only ever be set once. They are identified by the keyword CONST. Two examples of using a constant are shown. **CONST REAL PI** **SET PI TO 3.14159** SET circumference TO radius * PI * 2 #### **Data structures** **ARRAY** **STRING** Indices start at zero (0) for all data structures. All data structures have an append operator, indicated by &. Using & with a STRING and a non-STRING will coerce to STRING. For example, SEND 'Fred' & age TO DISPLAY, will display a single STRING of 'Fred18'. #### **Identifiers** Identifiers are sequences of letters, digits and '_', starting with a letter, for example: MyValue, myValue, My_Value, Counter2 #### **Functions** LENGTH() For data structures consisting of an array or string. RANDOM(n) This generates a random number from 0 to n. #### **Comments** Comments are indicated by the # symbol, followed by any text. A comment can be on a line by itself or at the end of a line. #### **Devices** Use of KEYBOARD and DISPLAY are suitable for input and output. Additional devices may be required, but their function will be obvious from the context. For example, CARD_READER and MOTOR are two such devices. #### **Notes** In the following pseudocode, the < > indicates where expressions or values need to be supplied. The < > symbols are not part of the pseudocode. | Variables and arrays | | | |---|--|--| | Syntax | Explanation of syntax | Example | | SET Variable TO <value></value> | Assigns a value to a variable. | SET Counter TO 0
SET MyString TO 'Hello world' | | SET Variable TO <expression></expression> | Computes the value of an expression and assigns to a variable. | SET Sum TO Score + 10
SET Size to LENGTH(Word) | | SET Array[index] TO <value></value> | Assigns a value to an element of a one-dimensional array. | SET ArrayClass[1] TO 'Ann'
SET ArrayMarks[3]TO 56 | | SET Array TO [<value>,]</value> | Initialises a one-dimensional array with a set of values. | SET ArrayValues TO [1, 2, 3, 4, 5] | | SET Array [RowIndex,
ColumnIndex] TO <value></value> | Assigns a value to an element of a two dimensional array. | SET ArrayClassMarks[2,4] TO 92 | | Selection | | | |---|--|--| | Syntax | Explanation of syntax | Example | | IF <expression> THEN
<command/>
END IF</expression> | If <expression> is true then command is executed.</expression> | IF Answer = 10 THEN SET Score TO Score + 1 END IF | | IF <expression> THEN
<command/>
ELSE
<command/>
END IF</expression> | If <expression> is true then first <command/> is executed, otherwise second <command/> is executed.</expression> | IF Answer = 'correct' THEN SEND 'Well done' TO DISPLAY ELSE SEND 'Try again' TO DISPLAY END IF | | Repetition | | | |--|--|---| | Syntax | Explanation of syntax | Example | | WHILE <condition> DO
<command/>
END WHILE</condition> | Pre-conditioned loop. Executes <command/> whilst <condition> is true.</condition> | WHILE Flag = 0 DO
SEND 'All well' TO DISPLAY
END WHILE | | REPEAT
<command/>
UNTIL <expression></expression> | Post-conditioned loop. Executes <command/> until <condition> is true. The loop must execute at least once.</condition> | REPEAT SET Go TO Go + 1 UNTIL Go = 10 | | REPEAT <expression> TIMES <command/> END REPEAT</expression> | Count controlled loop. The number of times < command> is executed is determined by the expression. | REPEAT 100-Number TIMES
SEND '*'TO DISPLAY
END REPEAT | | FOR <id> FROM <expression> TO <expression> DO <command/> END FOR</expression></expression></id> | Count controlled loop. Executes <command/> a fixed number of times. | FOR Index FROM 1 TO 10 DO
SEND ArrayNumbers[Index]
TO DISPLAY
END FOR | | FOR <id> FROM <expression> TO <expression> STEP <expression> DO <command/> END FOR</expression></expression></expression></id> | Count controlled loop using a step. | FOR Index FROM 1 TO 500 STEP
25 DO
SEND Index TO DISPLAY
END FOR | | FOR EACH <id> FROM
<expression> DO
<command/>
END FOREACH</expression></id> | Count controlled loop. Executes for each element of an array. | SET WordsArray TO ['The', 'Sky', 'is', 'grey'] SET Sentence to " FOR EACH Word FROM WordsUArray DO SET Sentence TO Sentence & Word & '' END FOREACH | | Input/output | | | |---|--------------------------------|---| | Syntax | Explanation of syntax | Example | | SEND <expression> TO DISPLAY</expression> | Sends output to the screen. | SEND 'Have a good day.' TO
DISPLAY | | RECEIVE <identifier> FROM (type) <device></device></identifier> | Reads input of specified type. | RECEIVE Name FROM (STRING) KEYBOARD RECEIVE LengthOfJourney FROM (INTEGER) CARD_READER RECEIVE YesNo FROM (CHARACTER) CARD_READER | | File handling | | | |---------------------------------------|--|--| | Syntax | Explanation of syntax | Example | | READ <file> <record></record></file> | Reads in a record from a <file> and assigns to a <variable>. Each READ statement reads a record from the file.</variable></file> | READ MyFile.doc Record | | WRITE <file> <record></record></file> | Writes a record to a file. Each WRITE statement writes a record to the file. | WRITE MyFile.doc Answer1,
Answer2, 'xyz 01' | | Subprograms | | | |---|----------------------------------|---| | Syntax | Explanation of syntax | Example | | PROCEDURE <id> (<parameter>,) BEGIN PROCEDURE <command/> END PROCEDURE</parameter></id> | Defines a procedure. | PROCEDURE CalculateAverage
(Mark1, Mark2, Mark3)
BEGIN PROCEDURE
SET Avg to (Mark1 + Mark2 +
Mark3)/3
END PROCEDURE | | FUNCTION <id> (<parameter>,) BEGIN FUNCTION <command/> RETURN <expression> END FUNCTION</expression></parameter></id> | Defines a function. | FUNCTION AddMarks (Mark1,
Mark2, Mark3)
BEGIN FUNCTION
SET Total to (Mark1 + Mark2 +
Mark3)/3
RETURN Total
END FUNCTION | | <id> (<parameter>,)</parameter></id> | Calls a procedure or a function. | Add (FirstMark, SecondMark) | | Arithmetic operators | | |----------------------|------------------| | Symbol | Description | | + | Add | | - | Subtract | | / | Divide | | * | Multiply | | ٨ | Exponent | | MOD | Modulo | | DIV | Integer division | | Relational operators | | |----------------------|--------------------------| | Symbol | Description | | = | equal to | | <> | not equal to | | > | greater than | | >= | greater than or equal to | | < | less than | | <= | less than or equal to | | Logical operators | | |-------------------|---| | Symbol | Description | | AND | Returns true if both conditions are true. | | OR | Returns true if any of the conditions are true. | | NOT | Reverses the outcome of the expression; true becomes false, false becomes true. |