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International GCSE Mathematics – 4MB1  

Principal Examiner Feedback – 4MB1 02 

 

Introduction 

 

On the whole, a small number of the students sitting this examination seemed unprepared and 

lacking knowledge in many subject areas that were being examined. This was across all areas but 

particularly noticeable with probability, matrix transformations and sets. Most students seemed well 

prepared and were able to demonstrate their knowledge and understanding across most of the 

questions covered.  

Problem areas that should receive special attention by Centres are as follows:  

 

• Read questions carefully  

• Read answers from calculators carefully and make appropriate use of more advanced facilities  

• Do not use premature rounding as it may lose final accuracy marks  

• Drawing lines to show the region defined by inequalities. (Q2)  

• Using the correct order of operations when simplifying algebraic fractions (Q3) 

• Set working out logically so it is able to be followed by examiners including labelling what th e 

calculation is finding (Q4) 

 

Report on individual questions 

 

Question 1 

 

Generally parts (a) and (b) were well answered by a majority of students. 

In part (a) most chose the economical method of 
5

cos
9.3

x   but others used the other trigonometric 

ratios or even the sine rule having worked out the length of CB. 

In a small minority of cases, weaker students in part (b) assumed that simple trigonometric formulae 

apply to scalene triangles and offered 
5

sin
10.8

y   as their method. In paper 2 if there is a formula 

given it is generally required for a more direct route to solving the problem – although there may be 

longer more involved methods using other formula. 

 

Question 2 

 

This question was poorly done with many students unable to draw the lines y = 4, x = 1 and x = 4 in 

addition to the more challenging 2x + 3y = 6.  A variety of incorrect regions emerged, which were 

not always finite and often not bounded by the lines drawn. 

Better students identified the correct region but lost marks in part (b) by either failing to recognise 

that integer coordinates were required or included all boundary points of the region R in their 

answer. Other students did not recognise the connection between part (a) and part (b) and tried to 

solve the inequalities.  

 

Question 3 

 

Many students were able to use the reciprocal and change the division sign to a multiplication sign. 

However, they were often unable to simplify this question by factorising the denominator using the 

difference of two squares and therefore found themselves completing more complicated algebra 

than was required.  



Those that attempted to multiply first, with or without the cancelling of  5 6x , generally 

demonstrated good algebraic skills to multiply out the brackets on the left but did not always do so 

well with the negative sign on the right hand side. They were then generally able to combine the 2 

fractions gained over a common denominator. One of the more common errors was to ignore the 

operation rules of doing division before subtraction.  

 

Question 4  

 

In part (a) two main methods were seen. Approximately half of the students used Pythagoras to find 

the height of the triangle and then used 
1

base height.
2
   The other half used the cosine rule, 

usually to find angle BAC and then used
1

sin
2

ab C .  The usual issues with early rounding of 

answers to either the height or the angle led to a final answer of 37.5 on several occasions.  

 

Part (b) proved to be beyond most students. Of those students who made an attempt, usually 

manged to find the volume of the ABC prism using their answer from part (a).  Few students 

calculated the perimeter of ABC and equated it to the perimeter of DEFG. Some of those who did 

used the perimeters of the entire prisms rather than just the cross-section. Many divided DG into 

two parts and used Pythagoras to calculate the smaller, right-hand section, then tried to calculate 

EF. There were some who assumed EF = 4.5cm or 5.5cm. 

Only a small number recognised that to find the area of the trapezium they only required EF + DG 

and not EF and DG as separate values. It is important that students make their working clear. 

Labelling any lengths found such as EF and EG enables the values to be followed through in further 

calculations. When lengths are not labelled and have come from incorrect working there is usually 

no way of knowing what the figures found represent. 

 

Question 5 

 

This question was well answered and a good proportion of students gained the majority of marks. 

However, students should be aware of the validity of their answers within the context of the 

question. For example, the number of cups of coffee is unlikely to be 
2

9
 

Many correct responses were seen in part (a).  The most common errors were adding 
8

100
 to 12.50 

and dividing by 0.8 or 1.08 

 

There was a good understanding of ratio demonstrated in part (b). It was generally well answered 

and 168 clearly calculated with subtraction shown. Unfortunately, a number of students calculated 

the difference between the number of cups of tea and the number of cups of hot chocolate in error. 

Some calculated both 210 and 42 correctly but did not subtract at the end. 

The fractional calculation in part (c) was answered well. However, a fair number found the value of 

3
378

8
 or 

3
126

8
  (the number of cups of tea) instead of the correct value of 

3
210

8
                      

The majority of responses to part (d) included a correct conversion but lacked a worded 

comparison. Students appeared unsure how to interpret the instruction to 'compare' prices and 

thought stating the two values was sufficient. Some students chose to show the two values as a 

proportion rather than difference and in these cases, the answers always omitted to include a word 

comparison. In some cases, marks were lost from rounding errors. 



In part (e) most students were able to arrive at £3.19 with the two clear steps shown. The most 

common errors were dividing by 0.75 and multiplying by 1.24.       

                 

Question 6 

 

Those students who knew how to use substitution to solve this type of simultaneous equations were 

often able to score full marks on this question. Others who did not, and attempted to add, subtract or 

multiply the equations scored zero marks. 

Most chose to substitute for y using 9 2y x  . Following the substitution, the most common error 

was in the expansion of  
2

9 2x to give 81 – 4y2. Once the three term quadratic was derived, the 

correct solutions were usually obtained, either by factorising, or more commonly using the 

quadratic formula. A few forgot to calculate y values once the two x values had been found. 

 

Question 7 

 

For many students this was a challenging question with most not fully understanding where to start.  

For those employing a vector approach, two different paths, involving two different parameters and 

the vectors a and b had to be stated for any vector passing through the point P. The coefficients of a 

and b then needed to be equated to reach values of 
3

8
and 

5

8
for the parameters. If students reached 

this stage they usually went on to gain full marks. 

In a small minority of cases very able students noticed that triangles OBP and CAP were similar 

with their corresponding sides in the ratio of 6:10 and therefore OP = 3/5 PC.  This was a much 

more economical method to reach the correct answer and was acceptable as a vector method had not 

been asked for. 

 

Question 8 

 

Parts (a) and (b) were the most accessible parts to this question. In a significant number of cases 

students reflected kite A in the x axis rather than in the line  1y    and only gained 1 of the 2 

marks. Many students overlooked part (b)(ii) and failed to provide an answer for the coordinates for 

the centre of rotation. 

Part (c) proved to be a challenge for many but the ones that did succeed inevitable multiplied the 

matrices M and N together first (in the correct order) before applying the resultant matrix to the 

coordinates of kite A. 

Those attempting part (d) usually worked out the areas of kite D and kite A separately before 

dividing one by the other, failing to spot that the area scale factor is given by the determinant of 

matrix MN 

 

Question 9 

In general, this question was poorly done. Although almost all students achieved at least 1 mark in 

part (a), there were a lot of errors.  These include missing terms in the Venn diagram, and confusing 

the phrase ‘study Chemistry’ for ‘only study Chemistry’ and therefore not subtracting the 

intersection values before entering them into the Venn diagram.  Many did not include x or 3x 

anywhere on their Venn diagram despite being clearly told in the question to include the numbers of 

students in terms of x where necessary.  

 

Most students attempted to find a value for x and understood that their entries on the Venn diagram 

needed to add to 90. However, due to blanks and missing terms on their diagram they were unable 

to make a proper attempt at this calculation. 

 



All marks in (c) where available to students whether their Venn diagram was correct or not, unless 

they had left blanks in the required sections in their diagram. Students who did not understand the 

set notation were unable to answer this question but those that did generally scored at least 2 of the 

3 marks available. 

 

It was clear from the responses to part (d) that conditional probability from a Venn diagram is an 

area that many students struggle to grasp. There was often no response at all to this question, or an 

answer with a denominator of 90 given.  

 

Question 10 

 

Question 10 had 7 separate parts in increasing order of difficulty and challenge. 

In part (b) many lost marks due to unacceptable notation. The most common incorrect notation was 

x  4 which gained no marks as this was mixing up the concepts of range and domain. 

Students who were familiar with function notation and questions from past papers usually 

performed well on parts (c), (d) and (e). 

Weaker students did not recognise that part (f) was testing knowledge of composite functions and a 

disappointing number who did, then stated that 
 

2

12
4

3x



reduced down to 

 2

144
4

9x



 

For part (g) students could take the given expression for hg(x) and equate it to 5 or take the easier 

route of solving 
 

2

12
4 5

3x
 


  

 

Question 11 

 

The table in part (a) was generally filled in correctly. A few miscalculated the first item, often 

getting a positive value from  
3

–2 = 8 instead of –8, leading to 26.  These students then tended to 

then plot the first point as +19.75 rather than –1.75, compounding their errors. 

There was some incorrect plotting of points from weaker students in part (b); particularly misusing 

the scale as 10 small squares equals 1 rather than 5. A few missed the first or last points or the one 

near the origin. 

Generally, points were joined using a reasonable curve. 

In part (c) students the more able students demonstrated that they understood how to draw a tangent 

at 2.x   A few students misread the values on their graph when attempting to calculate the gradient 

and some calculated values just outside of the acceptable range. A few used calculus rather than 

drawing a tangent to find the gradient and thus were not able to gain the marks since the question 

stated that the graph should be used. 

There were very few attempts at this part (d). Only a small proportion drew 5y x  on their 

graph.  A minority of those who drew 5y x attempted to find an interval with even fewer realising 

there were two ranges to be found.  

 

Question 12 

 

A number of students spoilt their answers in parts (a) and (b) by assuming the taking of counters 

was with replacement even though the question clearly stated the counters were to be drawn from 2 

separate bags. Hence 14 was a common incorrect denominator for the probabilities for Bag B. In 

part (b) the most common method used was to add together the different probabilities with the most 

common error being to miss out yellow followed by green 



Part (c) was a challenging question which discriminated well at the top grade boundaries. It was 

pleasing to see the success many able students had with this last aspect on the question paper. 
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