

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International GCSE in Mathematics B Paper 2 (4MB0/02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UG039441
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question Number	Answer	Notes		Marks
1(a)	{4, 6, 8, 9, 10}	B1	1	
1(b)	{4, 6, 8}	B1	1	
1(c)	$(A \cap C)' \cap B' = \{9, 10\} \tag{cao}$	B1		
	$n([A \cap C]' \cap B') = 2$	B1 ft	2	4
2(a)	$x^2 = 4$	M1		
	$ \begin{aligned} x &= +2 \\ x &= -2 \end{aligned} $	A1 A1	3	
	NB: If we see just $\begin{pmatrix} 1 & 3 \\ "2" & 0 \end{pmatrix} \begin{pmatrix} "2" \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$ then score M1 A0 A0			
2(b)	subst " $x = 2$ or $x = -2$ " for x in " $x + 6 = y$ " OR subst " $x = 2$ or $x = -2$ " in given matrix eq ⁿ eg $\begin{pmatrix} 1 & 3 \\ "2" & 0 \end{pmatrix} \begin{pmatrix} "2" \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$	M1		
	and only award the A1 for $x = 2$ if the cand. explicitly states " $x = 2$ "			
	y = 8	A1		
	y = 4 NB: In (b), the A marks are only available from using $x + 6 = y$	A1	3	6

	OR from seeing $\binom{8}{4}$ or $\binom{4}{4}$ correctly resulting from substituting $x = 2$ or $x = -2$ " in given matrix eq ⁿ (as shown above) and $y = 8$ and $y = 4$ stated.			
3(a)	6 <i>t</i> - 4 (1 term correct ie 6 <i>t</i> or -4)	M1		
	fully correct NB: Condone $6t - 4 + 0$	A1	2	
3(b)	6t - 4'' = 0	M1		
	$\frac{4}{6}, \frac{2}{3}, \text{ awrt } 0.667$ (cao)	A1	2	
3(c)	$(3\times5^2 - 4\times5 + 10) - (3\times4^2 - 4\times4 + 10)$ NB: (1) Allow $s(4) - s(5)$ for M1 (2) Allow at total of 1 sign slip within the brackets	M1		
	23 m (cao)	A1	2	6

4 (a)	p + t = 50 (o.e)	B1	1	
4(b)	$p = 4t$, $4t + \frac{p}{4} = 50$ NB(1) $4t + t = 50$ collects B0 in (b) and then possibly M1, A1, A1 in (c) (2) Watch for $t = 4p$ leading to $t = 40$ and $p = 10$ (Ms, though not the A marks, in (c) and (d) are still available though)	B1	1	
4(c)	"4t" + $t = 50$ OR Ratio method: $\frac{50}{4+1}$ or $4 \times \frac{50}{4+1}$	M1		
	t = 10 (cao)	A1		
	$(p = 4t = 4 \times "10")$			
	 p = 40 (cao) NB: The M mark here is for a correct attempt at solving 2 linearly independent equations. 	A1	3	
4(d)	No. of teachers = " 10 " – 1 and			

	No. of pupils = "40" – 5	M1	
	$£3 \times "35" + £10 \times "9"$	M1 (DEP)	
	£195 (cao)	A1 3	8
	OR "10"x£10 + "40"x£3 (= £220) "£220" - (1x£10 + 5x£3) £195	M1 M1 (DEP) A1	
5(a)	(i) $x < \frac{5}{2}$ or $\frac{10}{4}$ or 2.5	B1	
	(ii) number line drawn from $x = \frac{5}{2}$ in the negative dir ⁿ (ie line drawn to at least $x = -5$ or line with arrow pointing to the left)	B1	
	open circle around $x = \frac{5}{2}$	B1 3	
5(b)	(i) $9 - 12 \le 3x - x$ (oe) or $-3 \le 2x$ or $-2x \le 3$	M1	
	$x \ge -\frac{3}{2} \text{or} -1.5$	A1	
	(ii) number line drawn from $x = -\frac{3}{2}$ in the positive dir ⁿ (ie line drawn to at least $x = 5$ or line with an arrow pointing to the right)	B1	
	The time drawn to at least $x = 3$ or time with an arrow pointing to the right)		l

	closed circle around $x = -\frac{3}{2}$	B1	4	
5(c)	One of $x \ge -\frac{3}{2} \left(\text{or } x \le -\frac{3}{2} \left(ft \text{ from (b)} \right) \right) \text{ or } x < \frac{5}{2}$ $-\frac{3}{2} \le x < \frac{5}{2} \text{OR} x \ge -\frac{3}{2} \text{ and } x < \frac{5}{2} \text{OR} \left[-\frac{3}{2}, \frac{5}{2} \right]$	B1		
	$-\frac{3}{2} \le x < \frac{5}{2} \text{OR} x \ge -\frac{3}{2} \text{ and } x < \frac{5}{2} \text{OR} \left[-\frac{3}{2}, \frac{5}{2} \right]$	B1	2	9
6(a)	(i) 7	B1		
J (u)	(ii) Attempt at arranging houses in order of increasing # of people living in them and indicating the mid-house OR Cumulative frequencies of 13 and 19 houses seen or with sight of (30+1)/2 or 30/2	B1		
	6 (cwo) ("cwo" = from correct working only)	B1		
	(iii) $\frac{"(2+6+3+16+15+36+56+16+9)"}{30}$ (= 159/30) (allowing 1 numerical error in numerator)	M1		
		A1	5	
6(b)	awrt 5.3, $\frac{159}{30}$ (o.e), $5\frac{3}{10}$ $\frac{4}{30} \times \frac{3}{29} \text{ or } \frac{3}{30} \times \frac{4}{29}$	M1		
	$\frac{24}{870}$ (oe), awrt 0.0276, 27.6%	A1	2	
6(c)	P(5)+P(6)+P(7)+P(8)+P(9) =			

	$\frac{15}{159} + \frac{36}{159} + \frac{56}{159} + \frac{16}{159} + \frac{9}{159}$ OR	M1		
	$1 - P(1) - P(2) - P(3) - P(4) = 1 - \frac{2}{159} - \frac{6}{159} - \frac{3}{159} - \frac{16}{159} \left(=1 - \frac{27}{159} \right)$			
	NB: Allow 1 slip in the numerators.			
	$\frac{132}{159}$ (oe), awrt 0.83, 83%	A1	2	9
	D. P. I. I. C. I. II. ONCE . I. '. d.'			
	Penalise lack of labelling ONCE only in this question			
7 (a)	Triangle A drawn and labelled.	B1	1	
7(b)	Triangle $B = \begin{pmatrix} 2 & 4 & 4 \\ -2 & -2 & -1 \end{pmatrix}$ drawn and labelled. Triangle $C = \begin{pmatrix} -4 & -8 & -8 \\ 4 & 4 & 2 \end{pmatrix}$ $(-4, 4), \qquad (-8, 4), \qquad (-8, 2)$	B1	1	
7(c)	Triangle $C = \begin{pmatrix} -4 & -8 & -8 \\ 4 & 4 & 2 \end{pmatrix}$			
	(-4,4), (-8,4), (-8,2)	B2 ft (-		
		1eeoo)		
	SC: Answer left as matrix: B1 B0		2	
7(d)	Triangle C drawn and labelled	B1 ft	1	
	NB: ft on coords or matrix (if it is a SC) in (c)			
7(e)	Scale factor = 2	B1	1	
7(f)	Triangle $D = \begin{pmatrix} -4 & -8 & -8 \\ 9 & 9 & 7 \end{pmatrix}$ drawn and labelled	B1 ft (on (d))	1	

Enlargement centre (0, 5)	B1		
with scale factor -2	B1	2	9
Penalise ncc ONCE only in this question			
$BD^2 = 6^2 + 8^2 - 2 \times 6 \times 8 \times \cos(110)$	M1		
$BD = \sqrt{6^2 + 8^2 - 2 \times 6 \times 8 \times \cos(110)}$	M1 (DE	P)	
NB: $\sqrt{(100-96)\cos 110}$ scores M0			
<i>BD</i> = 11.525 -> 11.5	A1	3	
$\frac{BC}{} = \frac{"11.525"}{}$	3.51		
$\sin 40^{\circ}$ $\sin 60^{\circ}$	MI		
$BC = \frac{"11.525" \times \sin 40^{\circ}}{}$	M1 (DF	P)	
	· ·		
	Al	3	
	M1		
$\sin \angle ABD = \sin 110^{\circ}$			
$\angle ABD = \sin^{-1}\left(\frac{8 \times \sin 110}{"11.525"}\right) = \left(=40.71^{\circ}, 40.821^{\circ} \left(from 11.5\right)\right)$	M1 (DE	P)	
$AC^2 = 6^2 + "8.554"^2 - 2 \times 6 \times "8.554" \times \cos("40.71" + 80)$	M1 (DE	P)	
$AC = \sqrt{6^2 + "8.554"^2 - 2 \times 6 \times "8.554" \times \cos("40.71" + 80)}$	M1 (DE	P)	
AC = 12.712 -> 12.7	A1	5	11
NB: $AC = 12.706$ (from 8.54 and 40.821°)			
	with scale factor -2 Penalise ncc ONCE only in this question $BD^{2} = 6^{2} + 8^{2} - 2 \times 6 \times 8 \times \cos(110)$ $BD = \sqrt{6^{2} + 8^{2} - 2 \times 6 \times 8 \times \cos(110)}$ $NB: \sqrt{(100 - 96)\cos 110} \text{ scores } M0$ $BD = 11.525 -> 11.5$ $\frac{BC}{\sin 40^{\circ}} = \frac{"11.525"}{\sin 60^{\circ}}$ $BC = \frac{"11.525" \times \sin 40^{\circ}}{\sin 60^{\circ}}$ $BC = 8.554 -> 8.55 \text{ or } 8.54 \text{ (from "11.5")}$ $\Delta ABC \text{ Route:}$ $\frac{8}{\sin \angle ABD} = \frac{"11.525"}{\sin 110^{\circ}}$ $\angle ABD = \sin^{-1}\left(\frac{8 \times \sin 110}{"11.525"}\right) \left(=40.71^{\circ}, 40.821^{\circ} \left(from 11.5\right)\right)$ $AC^{2} = 6^{2} + "8.554"^{2} - 2 \times 6 \times "8.554" \times \cos("40.71" + 80)$ $AC = \sqrt{6^{2}} + "8.554"^{2} - 2 \times 6 \times "8.554" \times \cos("40.71" + 80)$	with scale factor -2 Penalise ncc ONCE only in this question $BD^2 = 6^2 + 8^2 - 2 \times 6 \times 8 \times \cos(110)$ $BD = \sqrt{6^2 + 8^2 - 2 \times 6 \times 8 \times \cos(110)}$ $NB: \sqrt{(100 - 96)\cos 110} \text{ scores } M0$ $BD = 11.525 > 11.5$ $BC = \frac{"11.525"}{\sin 40^o}$ $BC = \frac{"11.525"}{\sin 60^o}$ $BC = 8.554 -> 8.55 \text{ or } 8.54 \text{ (from "11.5")}$ $A1$ $ABC Route:$ $\frac{8}{\sin \angle ABD} = \frac{"11.525"}{\sin 110^o}$ $\angle ABD = \sin^{-1}\left(\frac{8 \times \sin 110}{"11.525"}\right) \left(=40.71^o, 40.821^o \left(from 11.5\right)\right)$ $AC^2 = 6^2 + "8.554"^2 - 2 \times 6 \times "8.554" \times \cos("40.71" + 80)$ $AC = \sqrt{6^2 + "8.554"^2 - 2 \times 6 \times "8.554" \times \cos("40.71" + 80)}$ $AC = 12.712 -> 12.7$ A1	with scale factor -2 Penalise ncc ONCE only in this question $BD^{2} = 6^{2} + 8^{2} - 2 \times 6 \times 8 \times \cos(110)$ $BD = \sqrt{6^{2} + 8^{2} - 2 \times 6 \times 8 \times \cos(110)}$ $NB: \sqrt{(100 - 96) \cos 110} \text{ scores } M0$ $BD = 11.525 > 11.5$ $BC = \frac{"11.525"}{\sin 40^{\circ}}$ $BC = \frac{"11.525" \times \sin 40^{\circ}}{\sin 60^{\circ}}$ $BC = 8.554 - 8.55 \text{ or } 8.54 \text{ (from "11.5")}$ $A1 = 3$ $ABC \text{ Route:}$ $\frac{8}{\sin \angle ABD} = \frac{"11.525"}{\sin 110^{\circ}}$ $\angle ABD = \sin^{-1}\left(\frac{8 \times \sin 110}{"11.525"}\right) \left(=40.71^{\circ}, 40.821^{\circ} \left(\text{from 11.5}\right)\right)$ $AC^{2} = 6^{2} + "8.554"^{2} - 2 \times 6 \times "8.554" \times \cos("40.71" + 80)$ $AC = \sqrt{6^{2}} + "8.554"^{2} - 2 \times 6 \times "8.554" \times \cos("40.71" + 80)$ $AC = 12.712 > 12.7$ $A1 = 5$

$AC = 12.715 \text{ (from } 8.55 \text{ and } 40.821^{\circ}\text{)}$		
OR $ \frac{\Delta ADC \text{ Route:}}{\sin 80} = \frac{"8.554"}{\sin 40} \text{ OR} = \frac{"11.525"}{\sin 60} \text{ leading to } DC = 13.105 $ $ \frac{6}{\sin \angle ADB} = \frac{"11.525"}{\sin 110} $ $ \angle ADB = \sin^{-1} \left(\frac{6 \times \sin 110}{"11.525"}\right) \left(=29.29^{\circ}\right) $ $ AC^{2} = "13.105"^{2} + 8^{2} - 2 \times "13.105" \times 8 \times \cos(40 + "29.29") $ $ AC = \sqrt{"13.105"^{2} + 8^{2} - 2 \times "13.105" \times 8 \times \cos(40 + "29.29")} $	M1 M1 (DEP) M1(DEP on method for DC and ∠ADB)	
$AC = 12.712 \rightarrow 12.7$	M1 (DEP) A1 5	11

9(a)	-2.75, 0.25, 1.25 OR $-2\frac{3}{4}, \frac{1}{4}, 1\frac{1}{4}$	B1, B1, B1	
	SC: -2.8, 0.3, 1.3 scores B0 B1 B1		
9(b)	Curve		
	-1 mark for		
	straight line segments		
	each point missed		
	each missed segment		
	each point not plotted		
	each point incorrectly plotted		
	tramlines		
	very poor curve	B3 ft (-1	
	ND: A source of on both platting and drawing is 1	eeoo)	
	NB: Accuracy for both plotting and drawing is $\pm \frac{1}{2}ss$	3	
9(c)	$x = 1.65 (\pm 0.05) (\text{from "graph"})$	B1 ft	
	$x = 4.85 (\pm 0.05)$ (from "graph")	B1 ft 2	
	NB: Accept (1.65, -2.18) B1 ft and (4.85, -0.57) B1 ft		
	SC: $1.65 < x < 4.85$ scores B1 B0		
9(d)	Reading off y values at $x = 1.65$ and 4.85	M1	
	OR choosing two points on <i>AB</i> and reading off the corresponding		
	Δx and Δy		
	Δy "(-0.57)"-"(-2.18)" 1	M1 (DEP)	
	gradient = $\frac{\Delta y}{\Delta x}$ = $\frac{"(-0.57)" - "(-2.18)"}{"4.85" - "1.65"}$ ($\pm \frac{1}{2}$ ss for each coord. element)		
	gradient = 0.5 (+/- 0.05 allowing $\pm \frac{1}{2}ss$) (cao)	A1 3	11
10(a)	-2	B1 1	

10(b)	$y(x-1) = 2$ OR $x-1=\frac{2}{y}$ OR x and y swapped	M1	
	$\left(\mathbf{f}^{-1}(x)\right) = \frac{2+x}{x} \text{OR} \frac{2}{x} + 1$	A1 2	
10(c)	$y(x-1) = 2 OR x-1 = \frac{2}{y} OR x \text{ and } y \text{ swapped}$ $\left(f^{-1}(x) = \right) \frac{2+x}{x} OR \frac{2}{x} + 1$ $\left(\frac{2+x}{x}\right)^{2} -3 (\text{subst.})$	M1	
	$\frac{4+4x+x^2-3x^2}{x^2}$ "(1 fraction)" OR $\frac{4}{x^2} + \frac{4}{x} - 2$ NB: Their (b) must be of the form $\frac{ax+b}{x}$ to be able to collect the M1	M1 (DEP)	
	(DEP) above $gf^{-1}(x) = \frac{4+4x-2x^2}{x^2} \qquad (cc)$	A1 3	
10(d)	$x = 0$ OR $x \neq 0$ OR 0/zero (by itself)	B1 1	
10(e)	$\frac{4+4x-2x^{2}}{x^{2}} = 1$ $3x^{2} - 4x - 4 = 0 $ (oe, ie × (-1)) $(3x+2)(x-2)$ (solving trinomial quad.)	M1	
	$3x^2 - 4x - 4 $ (= 0) (oe, ie × (-1))	A1	
	(3x + 2) (x - 2) (solving trinomial quad.)	M1	
	$-\frac{2}{3}$ (oe) or awrt (-0.667), 2 (cso)	A1, A1 5	12

	OR			
	$(1 + 2/x)^2 - 3 = 1$ M1 (starting anew) $(1 + 2/x)^2 = 4$ A1 $1 + 2/x = \pm 2$ M1 $-\frac{2}{3}$ or awrt (-0.667), 2 (cao) A1, A1			
	3 (646)			
11(a)	(i) $\overline{AB} = 2\mathbf{b} - \mathbf{a}$	B1		
	(ii) $\overrightarrow{BC} = -\mathbf{b}$	B1		
	(iii) $\overrightarrow{FB} = \frac{1}{3} "\overrightarrow{AB}" = \frac{1}{3} "(2\mathbf{b} - \mathbf{a})", "\frac{2\mathbf{b}}{3} - \frac{\mathbf{a}}{3}"$	B1 ft		
	(iv) $\overrightarrow{FC} = "\frac{1}{3}(2\mathbf{b} - \mathbf{a})" + "- \mathbf{b}"$	M1		
	$\overrightarrow{FC} = -\frac{1}{3}(\mathbf{a} + \mathbf{b}) \tag{o.e}$	A1	5	
11(b)	(i) $\overrightarrow{OD} = \frac{1}{4} \overrightarrow{OB} = \frac{1}{2} \mathbf{b}$ (ii) $\overrightarrow{AD} = -\mathbf{a} + \frac{1}{2} \mathbf{b}$	B1		
		M1		
	$\overrightarrow{AD} = -\mathbf{a} + \frac{1}{2}\mathbf{b}$	A1	3	
11(c)	$\overrightarrow{FE} = -\frac{\lambda}{3} (\mathbf{a} + \mathbf{b}) \tag{o.e}$	B1 ft	1	
11(d)	$\overrightarrow{FE} = \overrightarrow{FA} + \overrightarrow{AE}$ route:			

$\overrightarrow{AE} = \frac{4}{3} \overrightarrow{AD} = \frac{4}{3} " \left(-\mathbf{a} + \frac{1}{2} \mathbf{b} \right) "$	M1
$\overrightarrow{FE} = \frac{2}{3} \left(-"(2\mathbf{b} - \mathbf{a})" \right) + \frac{4}{3}" \left(-\mathbf{a} + \frac{1}{2}\mathbf{b} \right)"$	M1 (DEP)
$\overrightarrow{FE} = \overrightarrow{FB} + \overrightarrow{BD} + \overrightarrow{DE} \text{ route:}$	
$\overrightarrow{DE} \left(= \frac{1}{3} \overrightarrow{AD} \right) = \frac{1}{3} \text{"} \left(-\mathbf{a} + \frac{1}{2} \mathbf{b} \right) \text{"}$ $\overrightarrow{FE} = \frac{1}{3} \text{"} (2\mathbf{b} - \mathbf{a}) \text{"} + \frac{3}{4} (-2\mathbf{b}) + \text{"} \left(\frac{1}{3} \left(-\mathbf{a} + \frac{1}{2} \mathbf{b} \right) \right) \text{"}$ \mathbf{OR}	M1 M1 (DEP)
$\overrightarrow{FE} = \overrightarrow{FA} + \overrightarrow{AO} + \overrightarrow{OE} \text{ route:}$ $\overrightarrow{DE} \left(= \frac{1}{3} \overrightarrow{AD} \right) = \frac{1}{3} \text{"} \left(-\mathbf{a} + \frac{1}{2} \mathbf{b} \right) \text{"}$	
$\overrightarrow{FE} = \frac{2}{3} \left(-"(2\mathbf{b} - \mathbf{a})" \right) + \left(-\mathbf{a} \right) + \left\{ "\frac{1}{2} \mathbf{b}" + \frac{1}{3}" \left(-\mathbf{a} + \frac{1}{2} \mathbf{b} \right)" \right\}$	M1
	M1 (DEP)
$\therefore \overrightarrow{FE} = -\frac{2}{3} (\mathbf{a} + \mathbf{b}) \qquad \text{(o.e)}$	A1 3

11(e) $\therefore \overrightarrow{FE} = "-\frac{2}{3}(\mathbf{a} + \mathbf{b})" = "-\frac{\lambda}{3}(\mathbf{a} + \mathbf{b})"$	M1		
Equating their coef of a or their coef of b in above	M1 (DEP)		
$\lambda = 2$ (cwo)	A1	3	15
TOTAL 100 MARKS			

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE