

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Mathematics A (4MA0)
Paper 2F

Pearson Edexcel Level1/Level 2 Certificate Mathematics A (KMA0) Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG042077
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission
- o awrt -answer which rounds to

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Apart from question 18c where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Qu	estion	Working	Answer	Mark		Notes
1	(a)(i)		1000		B1	
	(a)(ii)		100	2	B1	
	(b)		-7	1	B1	
	(c)		1,2,4,7,14,28		B2	B1 for at least 3 correct factors and
						none incorrect, may be seen as
				2		product pairs; ignore repeats;
						ignore negatives. Allow 1 mark if
						all correct and at most 1 incorrect.
	(d)		2, 23	2	B2	B1 for 2 or 23; if more than 2
						given, -1 for each incorrect value
						Total 7 marks
_				ı	ı	
2	(a)	1	undred and sixty seven	1	B1	
	(b)	5467 + 3543 – 6799 oe			M1	
			2211	2	A 1	
						Total 3 marks
3	(i)		metres	1	B1	accept m
	(ii)		litres	1	B1	accept l
	(iii)		grams	1	B1	accept g, grammes
						Total 3 marks

4	(a)(i)		pyramid	1	B1	accept square-based pyramid or rectangular-based pyramid
	(a)(ii)		cuboid	1	B1	accept square prism or rectangular prism
	(b)		8	1	B1	cao
	(c)		6	1	B1	cao
						Total 4 marks
5	(a)		17, 14	2	B2	B1 for 17; B1 for 14
	(b)		subtract 3; -3	1	B1	oe
	(c)		-7	1	B1	cao
						Total 4 marks
6	(a)		Saturday	1	B1	accept Sat
<u> </u>	(b)		40	1	B1	decept out
	(c)		76	1	B1	
	(d)		Monday	1	B1	accept Mon
	(e)	90 : 60 or 9 : 6		2	M1	or any ratio equivalent to 3 : 2 or a final answer of 2 : 3
			3:2		A1	Allow 1.5 : 1 or 1 : $\frac{2}{3}$
						Total 6 marks

7 (a)		80	1	B1	
(b)		23	1	B1	
		$\overline{1000}$			
(c)		5.64	1	B1	
(d)	6.5 + 1.69		2	M1	for 6.5 or 1.69 or $\frac{819}{100}$ or 8.2
		8.19		A1	
(e)	$\frac{3}{8} \times 56.8 \text{ or } 56.8 \div 8 \times 3 \text{ oe}$		2	M1	or $\frac{213}{10}$
		21.3		A1	
					Total 7 marks
	922 . 452 (25.6)		1	3.41	
8	$8.3 \times 2 + 4.5 \times 2$ oe (=25.6)			M1	
	"25.6" – 10.6		3	M 1	dep
		15		A1	
					Total 3 marks
			1 4		A 11
9 (a)		<u>4e</u>	1	B1	Allow e4
(b)		7 <i>cd</i>	1	B1	7dc, d7c, dc7 etc but award no mark if multiplication signs are present
		11 . 21	2	B2	for $11m + 3k$
(c)		11m + 3k	2	DZ	B1 for $11m + 3k$

10	(a)		10	1	B1 .	Accept -10 or ± 10
	(b)	1, 4, 9, 16			M1 •	or any square number identified
		1, 8, 27				or any cube number identified
			25 and 64 or	3		allow 5^2 , 4^3 or 8^2 , 3^3 or 9^2 , $1^{(3)}$ or
			64 and 27 or 81 and 1		9	9^2 , 2^3 but not 5,4 etc
			or 81 and 8			
						Total 4 marks

11 (a)	$\frac{5}{8} = 0.625$ $\frac{3}{4} = 0.75$ $\frac{7}{16} = 0.4375$ $\frac{2}{3} = 0.666$	$\frac{7}{16} \frac{5}{8} \frac{2}{3} \frac{3}{4}$	2	for $\frac{7}{16}$ $\frac{5}{8}$ $\frac{2}{3}$ $\frac{3}{4}$ or for correct decimal equivalents in correct order or for correct fraction equivalents in correct order If not B2, then B1 for: • 3 fractions in correct order or • 2 fractions correctly converted to decimals or percentages (at least 2 sf rounded or truncated) or • 2 fractions expressed as equivalent fractions with a denominator of 48 (or a multiple of 48) SC: B1 for $\frac{3}{4}$ $\frac{2}{3}$ $\frac{5}{8}$ $\frac{7}{16}$ (reverse order)
(b)			2	M1 for $\frac{x}{120}$ with $x < 120$ or B1 for $\frac{113}{y}$ with $y > 113$
		$\frac{113}{120}$		A1
				Total 4 marks

12	10 - 2.50 - 1.25 - 1.30 oe (=4.95)			M1	Subtracting at least 2 of 2.50, 1.25,
					1.30 from 10
	'4.95' ÷ 3			M1	dep
		1.65	3	A1	
					Total 3 marks

13	(a)			4	1	B1	accept ×4
	(b)	y = -x drawn			2	M1	y = -x drawn or a congruent shape
							with the correct orientation in the
							1 st quadrant or a correct reflection
							in $y=x$
				(2,2) (2,5) (4,5) (4,3)		A 1	
	(c)		Rotation about ((0,-1) 90° clockwise	3	B1	Rotation (not turn)
						B1	(centre) (0, -1)
						B1	90° clockwise or -90° or 270° anti-
							clockwise or +270°
							NB. If more than one
							transformation given then no
							marks should be awarded
							Total 6 marks

14	(a)		0	1	B1 0%
	(b)		0.8 oe	1	B1
	(c)	$1 - \frac{2}{5}$ or $\frac{3}{5}$ oe			M1 or for $\frac{2}{5} \times 20$ oe or 8 or $\frac{8}{20}$
		$\frac{3}{5} \times 20$ oe		_	M1 (dep) for 20 – '8'
			12	3	A1 (NB: $\frac{12}{20}$ gains M2, A0)
					Total 5 marks

15	(a)		1	1	B1	
	(b)	6-1		2	M1	For 6 and 1 identified
			5		A1	
	(c)	$(25+1) \div 2$ or 13 or 12.5			M1	or listing scores and clear attempt
				2		to find middle value
			2		A1	
	(d)	$1 \times 9 + 2 \times 6 + 3 \times 3 + 5 \times 1 + 4 \times 6 \text{ oe}(=67)$			M1	sight of at least 4 products and
						intention to add (can be their 25 if
				2		evidence of adding frequencies)
		0 + 12 + 0 + 8 + 5 + 24		3	N/1	don for division of sum of meduate
		"67"÷25 or $\frac{9+12+9+8+5+24}{25}$ oe (allow			M1	dep for division of sum of products by 25 (can be their 25 if evidence
						of adding frequencies)
		one error in a product)				or adding frequencies)
			17			
			2.68 or $2\frac{17}{25}$		A1	accept 2.7 or 3 if preceded by $\frac{67}{25}$
	(e)				M1	$\frac{x}{25}$; $x < 25$ or $\frac{2}{y}$; $y > 2$
						$\frac{1}{25}$; $x < 25$ or $\frac{1}{y}$; $y > 2$
				2		,
			$\frac{2}{25}$ oe			0.00
			25		A1	accept 0.08, 8%
						Total 10 marks

16	(a)(i)		90	1	B1	
	(a)(ii)		25	1	B1	
	(b)	(13 45, 4 and	ine from 5) to (15 15, 45) d line from 45) to (16 30, 0)	2	B2	B1 for line from ((13 45, 45) to (15 15, 45) or for a line from (<i>x</i> , 45) to (16 30, 0) where x is a time before 1630
	·					Total 4 marks

		180 - ("76" ÷ 2)	142		M1dep A1	of the remaining exterior angles A correct method to find <i>k</i>
		360 - ("90"+"65"+"36"+"93") (= 76)		4		A correct method to find the total
		180-90(=90), 180-115(=65), 180-144(=36), 180-87(=93)			M1dep	the exterior angles at A,C,D & E – angles could be seen on diagram.
		alternative			M1	A correct method to find each of
			142		A1	
		"284" ÷ 2			M1	dep
		"720" – (90 + 115 + 144 + 87) [720 – 436] or 284		4	M1	dep
(1)	(b)	$(6-2) \times 180$ oe (=720)			M1	or $(180 - 360 \div 6) \times 6$
			180 - 2x		A1	oe eg $2(90 - x)$, $2(180 - x) - 180$ etc
17 (a	(a)	angle MRQ (or RMQ) = x or $\frac{180 - y}{2}$		2	M1	could be marked on diagram or for a correct equation in <i>x</i> and <i>y</i>

18 (a)		24 – 18y	1	B1
(b)		e(e+4)	1	B1 Allow $e(4 + e)$ and $(e + 0)(e + 4)$
(c)	Eg. $7x - 2x = -3 - 8$		3	M1 for correct rearrangement with x terms on one side and numbers on the other or the correct simplification of either x terms or numbers on one side in a correct equation eg. $5x + 8 = -3$; $7x = 2x - 11$
	5x = -11			M1 Award also for $-5x = 11$
		-2.2 oe		A1 -2.2 oe dependent on at least M1 awarded; If no correct algebraic working then award no marks
(d)	$y^2 + 10y - 2y - 20$			M1 for 3 correct terms out of 4 or for 4 correct terms ignoring signs or for $y^2 + 8y + c$ for any non-zero value of c or for + $8y - 20$
		$y^2 + 8y - 20$	2	A1 cao
				Total 7 marks

19	$15 \div (6-4) (=7.5)$			M1 or	use of cancelled ratios (eg 3:6:4
					$0.75:1.5:1, 15 \div 0.5 (=30)$
	$"7.5" \times 3 (=22.5)$		3	M1 de	ep; or cancelled ratios, (eg
				30	0×0.75) or M2 for $15 \div \frac{2}{3}$ oe
		22.5(0)		A1	-
	Alternative				
	$6n 4n = 15 \text{ or } 2n = 15 \text{ or or } 15 \times 13 \text{ or or or } 15 \times 13 \text{ or or } 15 \times 1$			M1	
	$\frac{6n}{13} - \frac{4n}{13} = 15$ or $\frac{2n}{13} = 15$ oe or $15 \times \frac{13}{2}$ oe or		3		
	n = 97.5				
	$\frac{3}{}$ × 97.5 oe			M1 de	ep
	3+6+4				
		22.5(0)		A1	
	Alternative				
	(3:6:4)21:42:28 and 24:48:32		3		or using ratios and seeing 1:42:28 and 24:48:32
	22.5 : 45 : 30			M1 C	orrect line or (21+24)÷2
		22.5(0)		A1	. ,
					Total 3 marks

20 (a)	$-5-4 < x \le 3-4$		2	M1	subtraction of 4 from either side in an inequality or one side of inequality correct (eg $x \le -1$) or
		$-9 < x \le -1$		A1	for $-5-4(=-9)$ and $3-4(=-1)$ Accept $x > -9$ (and) $x \le -1$
(b)		-3, -2, -1, 0, 1	2	B2	B1 for one omission or addition
					Total 4 marks
21	$\cos 39 = \frac{11.3}{\cos 3}$ oe		3	M1	or $\frac{x}{\sin 90} = \frac{11.3}{\sin(180 - 90 - 39)}$
	$\frac{\cos x}{x}$				$\sin 90 \sin(180 - 90 - 39)$
	$(x=) \frac{11.3}{\cos 39}$			M1	or $x = \frac{11.3}{\sin(180 - 90 - 39)} \times (\sin 90)$
		14.54		A1	awrt 14.54
	Alternative				
	$\tan 39 = \frac{y}{11.3} ; y = 9.15$ $"9.15"^2 + 11.3^2 = x^2$			M1	Must get to correct Pythagoras statement
	$(x =)\sqrt{"9.15"^2 + 11.3^2}$ oe			M1	
		14.54		A1	awrt 14.54 (NB: 14.5 with no working gains M0A0)
					Total 3 marks