

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International GCSE Mathematics A (4MA0/4H) Paper 4H

Pearson Edexcel Level 1/Level 2 Certificate Mathematics A (KMA0/4H) Paper 4H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UG037228
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o awrt answers which round to
- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eq. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless specifically allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Apart from Questions 9a, 15, 18a, 18b and 20, (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method, shown be taken to imply a correct method.

NB. All ranges given in the mark scheme are inclusive

Question	Working	Answer	Mark	Notes
1	$35 \div (3+2)$ or $35 \div 5$ or $\frac{2}{5} \times 35$			$M1 \text{allow } \frac{3}{5} \times 35 \text{ (=21)}$
	7×2	14	2	A1 NB 14: 21 on answer line scores M1 A0 unless 14
				identified
				Total 2 marks

Question	Working	Answer	Mark	Notes
2 (a)	1 - (0.4 + 0.35 + 0.1)			M1
		0.15 oe	2	A1 Accept as a decimal, fraction or percentage
(b)	80×0.35 oe			M1
		28	2	$\frac{\text{A1}}{\text{NB.}} \frac{28}{80}$ oe gains M1 A0
				Total 4 marks

Question	Working	Answer	Mark	Notes
3 (a)	$\pi \times 7.6^2$ or $\pi \times 57.76$			M1
		181	2	A1 for 181 – 182
(b) (i)		7.65	1	B1 accept 7.649
(ii)		7.55	1	B1
				Total 4 marks

Question	Working	Answer	Mark	Notes				
4 (a)	0.15×270 oe (=40.5)			M1	1 M2 for 0.85×270 oe or $(1 - 0.15) \times 270$ oe			
	270 - "40.5"			M1	dep	p		
		229.50	3	A1	accept 229.5			
(b)	$13.50 \div 15 \ (=0.9) \ \text{or} \ 100 \div 15 \ (=6.6)$			M1		M1 for $13.5 \div 3 (=4.5)$	M2 for	
						(=5%)	$13.5 \div 0.15$	
	"0.9" × 100 (=90) or "6.6" × 13.5(0)			M1	dep	M1 for 4.5×20		
		90	3	A1				
							Total 6 marks	

Question	Working	Answer	Mark	Notes
5	$360 \div 15 \ (=24) \ \text{or} \ \frac{(15-2)\times 180}{15} \ (=156)$			M1
		24	2	A1
				Total 2 marks

Question	Working	Answer	Mark	Notes						
6	126 × 0.89 (=112)			M1	M1 for $126 \times 0.89 \times 1.62$					
	112.14				(=181.67)					
	165.24 ÷ 1.62 (=102)			M1	M1 for "181.67" – 165.24					
					(=16.43)					
	"112.14" - "102"			M1 dep on at least one previous M	M1 for "16.43" ÷ 1.62					
				mark; accept "102" - "112.14"						
		10.14	4	A1						
					Total 4 marks					

Question	Working		Mark		Notes
7	Arc centre B cutting BA and BC at P and Q where			M1	for all relevant arcs (those drawn from <i>P</i> and <i>Q</i> may
	BP = BQ and arcs drawn fr			fall outside guidelines)	
		correct bisector	2	A1	for angle bisector in guidelines with all necessary
					arcs
					Total 2 marks

Question	Working	Answer	Mark	Notes
8	$18.6^2 - 7.2^2 (=294.12)$			M1 for squaring and M1 for correct method to
				subtracting find an angle and then
				correct trig ratio (or use of
				Sine rule) with a correct
				angle
	$\sqrt{294.12}$ or $\sqrt{18.6^2-7.2^2}$			M1 (dep) for square root M1 for isolating AC
	V 254.12 01 V10.0 7.2			correctly
		17.1	3	A1 for 17.1 – 17.15
				Total 3 marks

Question	Working	Answer	Mark	Notes
9 (a)	eg. $5x = 17 + 6$ 7x - 2x = 23 5x = 23			M2 for correct rearrangement with x terms on one side and numbers on the other AND correct collection of terms on at least one side or for $5x - 23 = 0$ or $23 - 5x = 0$
				M1 for $7x - 2x = 17 + 6$ oe ie correct rearrangement with x terms on one side and numbers on the other or $5x - 6 = 17$ or $7x = 2x + 23$
		$4\frac{3}{5}$ oe	3	A1 Award full marks for a correct answer if at least 1 method mark awarded (allow $\frac{23}{5}$ as final answer)
(b)	$x^2 + 2x + 8x + 16$			M1 for 3 correct terms out of a maximum of 4 terms or for 4 correct terms ignoring signs or for $x^2 + 10x + k$ for any non-zero value of k or for + $10x + 16$
		$x^2 + 10x + 16$	2	A1 cao
				Total 5 marks

Question	Working	Answer	Mark	Notes
10	$(6\times5) + (10\times15) + (19\times25) + (15\times35)$ or			M2 freq × all correct midpoint values stated (or
	30 + 150 + 475 + 525 or 1180			evaluated) with intention to add (condone any one
				error)
				If not M2 then award M1 for all products $t \times f$ (and t
				is consistently within the interval, including end
				values) and intention to add (condone any one error)
	"1180" \div 50 or "30"+"150"+"475"+"525"			M1 (dep on at least M1)
	$\frac{1180 \div 3001}{6+10+19+15}$			
		23.6	4	A1 Accept 24 with working (24 without working gains
				M0A0)
				Total 4 marks

Question	Working	Answer	Mark		Notes
11 (a)		5 , 0, -3, -4, -3 , 0 , 5	2	B2	B1 for 2 correct
(b)		correct graph	2	B2	For the correct smooth curve
					B1 for at least 6 points from table plotted correctly
					provided at least B1 scored in (a)
					Total 4 marks

Question	Working	Answer	Mark		Notes				
12	$\frac{20}{16}$ (=1.25) or $\frac{20}{16}$ ×14 oe (=17.5) or				or for a correct scale factor	M1 for $16 \div (20 - 16) = 4$			
	$\frac{16}{\frac{AC}{20}} = \frac{14}{16} \text{ oe}$				eg. $\frac{20}{16}$ or $\frac{16}{20}$ or 1.25 or				
	20 16				$0.8 \text{ or } \frac{14}{16} \text{ oe or } \frac{16}{14} \text{ oe}$				
	eg. $14 \times \frac{20}{16} - 14$			M1	for complete method	M1 for complete method			
		3.5	3	A1					
						Total 3 marks			

Question	Working	Answer	Mark		Notes
13 (a)	$eg \frac{12}{6-0} oe \ (=\frac{1}{2} oe)$			M1	for any correct method to find gradient
	$y = "\frac{1}{2}"x - 2 \text{ or } y = mx - 2 \text{ or}$			M1	for " $\frac{1}{2}$ " substituted for <i>m</i> or -2 substituted for <i>c</i> in $y =$
	$y = "\frac{1}{2}"x + c$				$mx + c$ or $y - 1 = \frac{1}{2}(x - 6)$ oe or
					$y - 2 = \frac{1}{2}(x - 0)$ oe
		y = ¹ y 2 oo	3	A1	NB Award M2A0 for a final answer of
		$y = \frac{1}{2}x - 2 \text{ oe}$			0.5x - 2 or $L = 0.5x - 2$
Alternative	-2 = 0 + c; $1 = 6m + c$			M1	form two simultaneous equations
	1 = 6m + -2			M1	substitute for <i>c</i>
		$y = \frac{1}{x}$	3	A 1	NB Award M2A0 for a final answer of
		$y = \frac{1}{2}x - 2$ oe			0.5x - 2 or $L = 0.5x - 2$
(b)				M1	for correct substitution of $(4, -2)$ into
					$y = \frac{1}{2}x + c$ oe using their gradient found in (a)
		$y = \frac{1}{2}x - 4 \text{ oe}$	2	A1	for $y = \frac{1}{2}x - 4$ oe follow through with their gradient
					found in (a) NB Award M1A0 for a final answer of $0.5x - 4$
					Total 5 marks

Question	Working	Answer	Mark	Notes
14 (a)		0.000012	1	B1
(b)	$790000 + 60000 \text{ or } 79 \times 10^4 + 6 \times 10^4$ or $7.9 \times 10^5 + 0.6 \times 10^5$			M1 or sight of digits 85
		8.5×10^{5}	2	A1
				Total 3 marks

Question	Worl	king	Answer	Mark		Notes
15	eg. 12x + 8y = 28 -12x - 9y = 45	eg. 9x + 6y = 21 +8x - 6y = 30			M1	for coefficient of x or y the same and correct operation to eliminate selected (condone any one arithmetic error in multiplication) or
						for correct rearrangement of one equation followed by correct substitution in the other
	y = -1	x = 3			A1	cao dep on M1
	Substitution of the above into one of				M1	(dep on 1st M1) for substituting to find the other variable or correct method of elimination to find second variable (as first M1)
			x = 3; y = -1	4	A1	cao Award 4 marks for correct values if at least first M1 scored
						Total 4 marks

Question	Working	Answer	Mark	Notes
16 (a)	Angle $POR = 180 - 2 \times 36 \ (=108)$			M1 May be seen on diagram
		54	2	A1
(b)	Angle $HJK = 180 - 124$ (=56) or angle $JHK = 90$			M1 May be seen on diagram
	Angle $HKJ = 180 - 90 - 56$			M1
		34	3	A1
				Total 5 marks

Question	Working	Answer	Mark	Notes
17 (a)	$F = \frac{"k"}{x^2}$			M1 k must be a letter not a number
	$0.8 = \frac{k}{5^2}$ or $k = 20$			M1 for substitution (implies first M1)
		$F = \frac{20}{x^2}$	3	All Award 3 marks for $F = \frac{"k"}{x^2}$ and $k = 20$ stated anywhere
				(even in (b)) unless contradicted by later work
(b)	$x^2 = \frac{"20"}{320}$ or $x = \sqrt{\frac{"20"}{320}}$			M1 ft if $k \neq 1$ for correct rearrangement
				NB. The only ft is for the value of k in $F = \frac{k}{x^2}$
		0.25 oe	2	A1 cao (ignore ±)
				Total 5 marks

Question	Working	Answer	Mark		Notes
18 (a)	$\frac{6\pm\sqrt{(-6)^2-4\times5\times-2}}{2\times5}$			M1	for correct substitution; condone one sign error; condone
	$\frac{3 = \sqrt{(3)^2 + 100}}{2 \times 5}$				missing brackets around $(-6)^2$; accept 6 and 6^2 in place of
	2×3				6 and $(-6)^2$ There may be partial evaluation – if
					so, this must be correct
	$\sqrt{76}$ or $\sqrt{36+40}$ or $2\sqrt{19}$ or			M1	(independent) for correct simplification of discriminant
	8.71				(if evaluated, at least 3sf rounded or truncated)
		1.47, -0.272	3	A1	for -0.27 to -0.272
					and 1.47 to 1.472
					Award 3 marks if first M1 scored and answer correct
	Alternative			M1	
	$x^2 - \frac{6}{5}x - \frac{2}{5} = 0$				for $(x-\frac{3}{5})^2$ oe
	$(x - \frac{3}{5})^2 - \frac{9}{25} - \frac{2}{5} = 0$ $(x - \frac{3}{5}) = \pm \sqrt{\frac{19}{25}}$, and the second
	$(x - \frac{3}{5}) = \pm \sqrt{\frac{19}{25}}$			M1	for $(x-\frac{3}{5}) = \pm \sqrt{\frac{19}{25}}$ oe
		1.47, -0.272	3	A1	for -0.27 to -0.272
					and 1.47 to 1.472
					Award 3 marks if first M1 scored and answer correct
(b)	$m^2 > 81 \text{ or } m^2 - 81 > 0$			M1	Allow $m^2 = 81$ or $m^2 - 81 = 0$
	$\pm \sqrt{"81"}$ or ± 9 or $(m+9)(m-9)$			B1	
		m > 9 ; m < -9	4	A2	A1 for $m > 9$;
					A1 for $m < -9$
					dep on at least M1 scored
					Total 7 marks

Question	Working	A	nswer	Mark		Notes		
19 (a)			$\frac{5}{7}$ for does not win		B1	on lower first branch or		
			7			on any branch labelled 'does not win'		
		corr	ect binary structure		B1	4 branches needed on RHS		
		all labels	and values correct	3	B1	NB. Allow decimals rounded	or truncated to 3 or more	
						sig figs $\left(\frac{2}{7} = 0.285714; \frac{5}{7}\right)$	$\frac{5}{7} = 0.714285$	
(b)	" $\frac{2}{7}$ "×" $\frac{2}{7}$ " (=0.0813) " $\frac{2}{7}$ "×" $\frac{5}{7}$ " (=0.204) or			M1	ft for any "correct" product; allow decimals only ft probabilities < 1	(-)2	
		.) or				probabilities	or M2 for $1 - \left(\frac{5}{7} \right)^2$	
	$"\frac{5}{7}" \times "\frac{2}{7}"$							
	$\left \frac{2}{7} \times \frac{2}{7} + \frac{2}{7} \times \right $	⁵ / ₇ " +			M1	ft for full method		
	$\begin{bmatrix} \frac{5}{7} \times \frac{2}{7} \text{ or} \\ \frac{2}{7} + \frac{5}{7} \times \frac{2}{7} \end{bmatrix}$							
	$\frac{2}{7}$ + $\frac{5}{7}$ × $\frac{2}{7}$							
			$\frac{24}{49}$	3	A 1	ft; allow for decimal answer,		
			49			truncated or rounded to 3 or 1 0.49 if preceded by more acc		
			_			1 ,	Total 6 marks	

Question	Working	Answer	Mark	Notes						
20	x = 0.3888888			M1 for met	hod as far	eg $100x = 38.88888$	eg $1000x = 388.8888$			
	10x = 3.88888			as atten	npting to	10x = 3.88888	10x = 3.88888			
	9x = 3.5			subtrac	t	90x = 35	990x = 385			
	$r = \frac{3.5}{1.5}$					$x = \frac{35}{100}$	385			
	$x = {9}$					$x = \frac{1}{90}$	$x = \frac{385}{990}$			
		$x = \frac{3.5}{9}$	2	A1 must re	each $\frac{3.5}{9}$ or e	equivalent fraction or $18x =$	7 before reaching $\frac{7}{18}$			
							Total 2 marks			

Question	Working	Answer	Mark	Notes
21	$4\pi r^2 = 81\pi$ or $4r^2 = 81$			M1 M2 for $r = 4.5$ or
	$r = \sqrt{\frac{81\pi}{4\pi}} (=4.5)$			M1 $r = \sqrt{\frac{81\pi}{4\pi}} \text{ oe (may be seen in two stages)}$
	$\frac{4}{3} \times \pi \times "4.5"^3$			M1 ft for "r" dep on first M1
		382	4	A1 for 381 - 382
				Total 4 marks

Question	Working	Answer	Mark	Notes
22	Bars of height			M1 for use of frequency ÷ class width may be implied by 3
	1.2, 2, 2, 3.6, 1.4			correct bars or 3 of $6 \div 5 (=1.2)$, $10 \div 5 (=2)$, $20 \div 10 (=2)$,
				$36 \div 10(=3.6)$, $28 \div 20(=1.4)$
				M1 for at least 4 bars correct or
				all of 1.2, 2, 3.6 and 1.4 (can be implied by correct
				heights)
		correct histogram	3	A1 fully correct histogram
				SC: B2 for all bars in correct proportion but at wrong heights
				(unless rescaled in which case full marks are available)
				(eg heights of 0.6, 1, 1, 1.8, 0.7)
				Total 3 marks

Question	Working	Answer	Mark			Notes	
23	Angle AMB identified			M1		Angle AMB identified	
	$(BM^2) = 15^2 + 6^2$			M1		$(AM^2=)9^2+15^2+6^2$	M2 for
	$(BM =) \sqrt{15^2 + 6^2} \text{ or}$			M1	(dep on	$(AM =)\sqrt{9^2 + 15^2 + 6^2}$ or	BM = 16.1 - 16.2
	$\sqrt{261}$ or $3\sqrt{29}$ (=16.1)				previous M1)	$\sqrt{342}$ or $3\sqrt{38}$ (=18.49)	or $AM = 18.4 - 18.5$
	$\tan AMB = \frac{9}{\sqrt{261}}$			M1		$\sin AMB = \frac{9}{18.49} (\times \sin 90) \ (= 0.4867)$	etc or
						$\cos AMB = \frac{"16.16"}{"18.49"} (= 0.8735) \text{ etc. } \mathbf{or.}$	
						correct method to find AM and BM with	correct substitution
						into Cosine rule and correct rearrangem	ent to make cosAMB
						the subject	
		29.1	5	A 1	for 29.1 -	29.25	
						tle BAM (60.9) found then maximum of M	M0M1M1M0A0
					unless this	is used to go onto find angle AMB	
							Total 5 marks

Question	Working	Answer	Mark	Notes	
24	$2^{\frac{1}{2}n} = \frac{2^x}{(2^3)^y}$			M1 for writing 8 as 2^3 or $2^{\frac{1}{2}^n}$ on lhs	
	$2^{\frac{1}{2^n}} = 2^{x-3y}$			M1 for 2^{x-3y} or $\frac{1}{2}n = x - 3y$	
		n = 2x - 6y	3	A1 or for $n = 2(x - 3y)$ or $n = (x - 3y) \div 0.5$	
					Total 3 marks

Question	Working	Answer	Mark	Notes
25	$\frac{5}{2(x-3)} - \frac{x+2}{(x-3)(x-1)}$ or $\frac{5}{2(x-3)} = \frac{x+2}{x+2}$			M1 $x^2 - 4x + 3$ factorised correctly
	2x-6 $(x-3)(x-1)$			M1 a correct common denominator – may be a single
	$\frac{5(x-1)}{2(x-3)(x-1)} - \frac{2(x+2)}{2(x-3)(x-1)}$			fraction or two fractions with correct numerators; denominator may be expanded correctly
	$\frac{5x-5-2x-4}{2(x-3)(x-1)}$			M1 correct single fraction with numerator expanded correctly; denominator may be expanded correctly
	$\frac{3(x-3)}{2(x-3)(x-1)}$			M1 correct factorisation of numerator; denominator may be expanded correctly
		$\frac{3}{2(x-1)}$	5	A1 Accept $\frac{3}{2x-2}$
	Alternative $\frac{5(x^2-4x+3)}{(2x-6)(x^2-4x+3)} - \frac{(2x-6)(x+2)}{(2x-6)(x^2-4x+3)}$			a correct common denominator – may be a single M1 fraction or two fractions with correct numerators; denominator may be expanded correctly
	$\frac{5x^2 - 20x + 15 - 2x^2 - 4x + 6x + 12}{(2x - 6)(x^2 - 4x + 3)}$			M1 correct single fraction with numerator expanded correctly; denominator may be expanded correctly;
	$\frac{3x^2 - 18x + 27}{(2x - 6)(x - 3)(x - 1)}$			M1 $x^2 - 4x + 3$ factorised correctly – could occur earlier
	$\frac{3(x-3)^2}{2(x-3)(x-3)(x-1)}$			M1 correct fully factorised numerator and denominator

	$\frac{3}{2(x-1)}$	5	A1 Accept $\frac{3}{2x-2}$	
			To	tal 3 marks

TOTAL FOR PAPER: 100 MARKS