

Mark Scheme (Results)

June 2016

Pearson Edexcel International GCSE Mathematics A (4MA0)
Paper 4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4MA0_4HR_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

M marks: method marks

A marks: accuracy marks

 B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths June 4HR 2016

Apart from questions 2a, 10, 14a 16, 20 (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an

incorrect method, should be taken to imply a correct method

Ques	Spec	Grade	Working		Answe	er	Mark	Notes
1	a			Ver	tices at	2	B2	If not B2 then B1 for correct size shape in wrong
				(3,5)(7,5)	(5)(7,7)(5,7)			position but correct orientation or 3 correct
								coordinates, or for enlargement SF3 centre (1,1)
	b			Enlarger	ment SF	1	B1	Single transformations only
				<u>0.5</u> , cent	tre (1,1)			
								Total 3 marks

2	a	Eg $6t - 2t = 5 + 9$ or $4t = 14$ or $-4t = -14$ oe		3	M2	For all <i>t</i> terms on one side and all numbers on the other side of a correct equation or M1 for all <i>t</i> terms on one side or all numbers on one side of a correct
						equation eg $4t - 5 = 9$ or $6t = 2t + 14$ or $6t - 2t - 5 = 9$ or $6t = 2t + 9 + 5$ etc
			3.5		A1	oe dep on M1
	b	6y + 6 + 2y - 8		2	M1	For 3 correct terms
			8y - 2		A1	oe eg $2(4y - 1)$
	С		W	2	B2	oe eg 0.5 <i>w</i>
			$\frac{\overline{2}}{2}$			B1 for partial, but correct, simplification with at least
			_			2 correct cancellations, eg $\frac{4w}{8}$, $\frac{wx}{2x}$, $\frac{2w}{4}$, $\frac{wy}{2y}$
						$w(4\div 8)$ etc or kw where k is a number and $k \neq \frac{1}{2}$
						Total 7 marks

3	a	$\frac{1.75}{2.1} \times 100$ oe		2	M1	Fully correct method to find %
		2.1	83.3		A1	83.3 or better
	b	$54.99 \times 5.52 = 303.(54)$ or $343 \div 5.52 = 62.(137)$		3	M1	
		$343 - (54.99 \times 5.52) (=39.(45))$ or $(343 \div 5.52) - 54.99 (=7.(14))$			M1	
		(3+3 + 3.32) - 34.77 (-7.(14))	39		A1	(also accept answers in range 39.45 to 39.5)
	С	7h 24 min = 7.4 h $\left(or7\frac{24}{60}\right)$ oe or		3	B1	
		444 (mins) or 26640 (secs)				
		$\frac{5522}{5}$ or $\frac{5522}{5} \times 60$ or				use of d/t, allow $\frac{5522}{7.24}$
		7.4 444			M1	7.24
		$\frac{3322}{26640} \times 3600$				
			746		A1	746 - 746.22
						Total 8 marks

4	a	$360 - 2 \times 111 - 90$		2	M1	A complete method to find angle <i>ABC</i>
			48		A1	
	b	111 – 90		2	M1	
			21		A1	
	c	540 - 90 - 90 - 111 - 111		3	M2	For a fully correct method to find angle <i>y</i> or M1 if
		100 0 (21)				using pentagon for $(5-2)\times180$ (=540) or for an
		or 180 – 2 × '21'				isosceles triangle drawn with y at apex or for
		or $2 \times (180 - 111)$				showing use of parallel lines on diagram
		or 2 × (180 – 111)				
		or $360 - 111 = 249$				
		180 - (360 - '21' -249 - 48)				
		oe	138		A1	
						Total 7 marks

5	a	7,-1,-2, 7	2	B2	all correct
				B1	for 2 or 3 correct
	b	Correct curve	2	M1	for plotting at least 6 points correctly from their
					table (dep on B1 earned in (a))
				A1	fully correct curve
	c	4.4 - 4.5	1	B1	ft any parabola with 2 intersections with $y = 4$,
					1 value for x only. Condone eg $(4.4, 4)$
					Total 5 marks

6		x = 10	3	B1	
	$3 + 6 + x + y = 4 \times 11$ oe			M1	Showing that the total of the 4 numbers is 4×11 oe, eg $x + y = 35$ (ft incorrect x for M1) or values of x and y that total 35 (where $x \ne 10$, $y \ne 25$)
		y= 25		A1	
					Total 3 marks
•					
7	$\pi \times 3^2 \ (= 9\pi = 28.27) \text{ or}$ $\pi \times (3+2)^2 \ (=25\pi = 78.53)$		3	M1	A correct calculation for the area of one of the circles
	$\pi \times 5^2 - \pi \times 3^2$ oe eg 16π			M1	A correct calculation for the shaded area
		50.3		A1	50.2 – 50.3
					Total 3 marks

8	a	$8000:50 \text{ or } 50:8000 \text{ or } \frac{8000}{50} \text{ oe}$		2	M1
			160		A1
	b	$\frac{72}{80} \times 50 \text{ oe}$ $72 \times 100 \div `160'$		2	M1 A correct method to find the length of the model, ft their answer to (a)
			45		A1 cao (If ans 1.6 in (a) then do not award marks for $72 \div 1.6 = 45$)
					Total 4 marks

9	$30 \times 120 = 3600$ or $10 \times 95 = 950$		3	M1	$30 \times 120 \text{ or } 10 \times 95$
	("3600" + "950") ÷ (30 + 10) (= "4550" ÷ "40")			M1	a fully correct method to find the mean weight of the 40 apples
		113.75		A1	accept 113.8, 114 providing M2 scored
					Total 3 marks

10			20x + 15y = 30		4	M1	for coefficients of x or y the same with the correct
	1	2x + 20y = -4	9x + 15y = -3				operation to eliminate one variable (allow one
	(1	11y = -22	(11x = 33)				error) or for correct rearrangement of one
							equation followed by substitution in the other.
		y = -2	<i>x</i> = 3			A1	(dep on M1)
	4.	$x + 3 \times -2 = 6$	$4 \times 3 + 3y = 6$			M 1	(dep on M1) for substituting for the other variable
							or starting again to eliminate the other variable
				x = 3, y = -2		A 1	(dep on M1, M1)
							Total 4 marks

11	$SR = (60 \div 15) \times 2 \ (=8)$		4	M1
	$\tan SQR = \frac{8'}{15}$			M1ft (or M1 for $\sin SQR = \frac{'8'}{'17'}$ or $\cos SQR = \frac{15}{'17'}$
				where '17' comes from a fully correct method)
	$SQR = \tan^{-1}\left(\frac{8'}{15}\right)$			M1ft (or $\sin^{-1}\left(\frac{'8'}{'17'}\right) or \cos^{-1}\left(\frac{15}{'17'}\right)$)
		28.1		A1 28.07 – 28.1
				Total 4 marks

12	a	12, 53, 78, 90, 96, 100	Correct table	1	B1	
	b		Correct	2	B2	fully correct cf graph – points at ends of intervals
			cumulative			and joined with curve or line segments
			frequency graph			If not B2 then B1(ft from a table with only one
						arithmetic error) for 4 or 5 of their points from
						table plotted consistently within each interval at
						their correct heights and joined with smooth curve
						or line segments
	ci		18000-20000	3	B1 ft	from their cumulative frequency graph
					M1ft	For use of 25 and 75, or 25.25 and 75.75, or
						28000(27000-29000) and 13000 (12000 – 14000)
						stated or indicated on graph. Ft from a cf graph
						provided method is shown.
	ii		13000 - 17000		A1ft	from their cf graph
						Total 6 marks

13	a		2.5×10^{3}	1	B1 cao
	b	$\frac{4\pi}{3} \times (6.99 \times 10^7)^3 \div$		3	M1 for $\frac{4\pi}{3} \times (6.99 \times 10^7)^3$ or $M2 \frac{(6.99 \times 10^7)^3}{(6.37 \times 10^6)^3}$ oe
		$\left[\frac{4\pi}{3} \times (6.37 \times 10^6)^3\right] \text{ or }$			$\left[\frac{4\pi}{3} \times (6.37 \times 10^6)^3\right] \tag{6.37 \times 10^6}$
		$(1.43\times10^{24}) \div (1.08\times10^{21})$			M1 for a complete method
			1320		A1 accept answers which round to 1320 or 1.32×10^3
					Total 4 marks
	1		1	1 2	M1 F 1/1 1 4 2/ 11
14	a	$4 \times 2y + 4 \times \frac{2 - 3y}{4} = 4 \times \frac{1}{4}$ or		3	M1 For multiplying each term by 4 or writing all terms with 4 as a denominator or isolating terms
					with denominator 4 on one side of equation and 2y
		$\frac{8y}{4} + \frac{2-3y}{4} = \frac{1}{4}$ or			or −2y the other side
		$2y = \frac{1}{4} - \frac{2 - 3y}{4}$ oe			
		8y + (2-3y) = 1 or $8y = -1 + 3y$			M1 A correct equation with no fractions
		Or $5y = -1$ oe			
			-0.2		A1 dep on at least M1 earned
	b		(2 1) (2)	2	M1 for $(3x \pm 1)(x \pm 3)$
			(3x+1)(x-3)		A1
	c	$4x^2 + 12x$ or $4x^2 - 12x + 9$ or		3	M1 For expansion of $4x(x+3)$ or $(2x-3)^2$ or
		$-4x^2 + 12x - 9$ oe			$-(2x-3)^2$
		$4x^2 + 12x - 4x^2 + 12x - 9$			M1 Fully correct expansions with correct removal of bracket (ie all signs correct)
			24x - 9 or 3(8x - 3)		A1

Total 8 marks

15	a	$\frac{7}{-} \times \frac{5}{-} + \frac{3}{-} \times \frac{3}{-}$		3	M1	for one correct product
		$\frac{10^{\circ}}{10^{\circ}} = \frac{10^{\circ}}{8} = \frac{10^{\circ}}{10^{\circ}} = \frac{10^{\circ}}{8} = \frac{10^{\circ}}{10^{\circ}} = \frac{10^{\circ}}{10^{$				
					M1	for both correct products (and no others) added
			44			
			80		A1oe	(55% or 0.55)
	b	12 11		2	M1	Correct product
		$\frac{18}{18} \times \frac{17}{17}$				
			132		A1oe	Accept 0.43(137) rounded or truncated to at
			$\frac{132}{306}$			least 2SF
						Total 5 marks

16	$(x =) \frac{6 \pm \sqrt{(-6)^2 - 4 \times 2 \times 3}}{2 \times 2}$		3	M1	condone one sign error, brackets not necessary. Some simplification may already be done – if so this must be correct. (accept 6^2 for $(-6)^2$)
	$(x=)\frac{6\pm\sqrt{12}}{4}$			M1	
				A1	answers rounding to 2.37 & 0.634
		0.634 & 2.37			dep on M1
					Total 3 marks

17			5	B1	Recognition of angle <i>LRM</i> as required angle either drawn on diagram or from working
	$PQ(ML) = 20\sin 30^{\circ} $ (=10) or			M2	For a correct method to calculate $PQ(ML) \& MR$ or
	$MR = \sqrt{12^2 + 20^2} = \sqrt{544} = 4\sqrt{34}$ $= 23.32)$				MR & LR or
	$LR = \sqrt{12^2 + (RQ)^2} = \sqrt{12^2 + (10\sqrt{3})^2} = \sqrt{444} = 2\sqrt{111} = 21.07$				$PQ(ML) \& LR$ (NB: LR requires use of $RQ = \sqrt{20^2 - 10^2} or 20 \cos 30 = \sqrt{300} = 10\sqrt{3} = 17.32$)
	$\sqrt{12^2 + (10\sqrt{3})^2} = \sqrt{444} = 2\sqrt{111} = 21.07$				Or M1 for a correct method to calculate one of the sides <i>PQ</i> or <i>MR</i> or <i>LR</i>
	$\sin MRL = \frac{10}{4\sqrt{34}} \left(\frac{ML}{MR}\right) \text{or}$			M1	(Dep on M2) Use of a correct trig ratio to find angle <i>MRL</i>
	$\cos MRL = \frac{2\sqrt{111}}{4\sqrt{34}} \left(\frac{LR}{MR}\right) \text{ or}$				
	$\tan MRL = \frac{10}{2\sqrt{111}} \left(\frac{ML}{LR}\right)$				
		25.4		A1	25.38 - 25.5
					Total 5 marks

18	a	5 and 6 in the	2	B2	Both correct, B1 for one correct
		correct regions of			
		the Venn diagram			
	bi	25	2	B1	Correct or ft from their Venn Diagram dep on both
	ii				values entered
		12		B1	Correct or ft dep on a value for "5" in Venn diagram
					Total 4 marks

19	a	$\overrightarrow{BC} = -4\mathbf{a} + 2\mathbf{b} + 8\mathbf{a} \ (=4\mathbf{a} + 2\mathbf{b})$		2	M1	A correct method to find \overrightarrow{BC} in terms of a and b
			$2\mathbf{a} + \mathbf{b}$		A1	
	b	$\overrightarrow{AM} = 4\mathbf{a} + ^{\circ}2\mathbf{a} + \mathbf{b}^{\circ} (=6\mathbf{a} + \mathbf{b}) \text{ and }$ $\overrightarrow{AN} = 2\mathbf{b} + 8\mathbf{a} + 4\mathbf{a} (=12\mathbf{a} + 2\mathbf{b})$ or $\overrightarrow{AM} = 4\mathbf{a} + ^{\circ}2\mathbf{a} + \mathbf{b}^{\circ} (=6\mathbf{a} + \mathbf{b}) \text{ and }$ $\overrightarrow{MN} = ^{\circ}\mathbf{b} + 2\mathbf{a}^{\circ} + 4\mathbf{a} (=6\mathbf{a} + \mathbf{b})$ or $\overrightarrow{AN} = 2\mathbf{b} + 8\mathbf{a} + 4\mathbf{a} (=12\mathbf{a} + 2\mathbf{b}) \text{ and }$ $\overrightarrow{MN} = ^{\circ}\mathbf{b} + 2\mathbf{a}^{\circ} + 4\mathbf{a} (=6\mathbf{a} + \mathbf{b})$ oe	Show	2	M1ft	For $\overrightarrow{AN} = 2\overrightarrow{AM}$ or $\overrightarrow{AM} = \overrightarrow{MN}$ or $\overrightarrow{AN} = 2\overrightarrow{MN}$ oe
					111	and there is a common point. oe Total 4 marks

20	$x^2 + 4 = x + 10$		6	M1 Equations equal to each other
	$x^2 - x - 6 = 0$			M1 for reduction to 3 term quadratic
	(x-3)(x+2)(=0)			M1 Factorisation or correct use of quadratic formula
	x = 3, x = -2			A1 Correct values for <i>x</i> dep on M2
	x = 3, y = 13, x = -2, y = 8			M1 $(y=)10 + 3$ and $(y=)10 - 2$ or $(y \text{ mid}=) 10 + 0.5$
				dep on previous A1 awarded
		(0.5, 10.5)		A1 dep on previous A1 awarded
	or			or
	$x^2 + 4 = x + 10$		6	M1 Equations equal to each other
	$x^2 - x - 6 = 0$			M1 for reduction to 3 term quadratic
	Sum of roots = 1 so midpoint has			M1 for Sum of roots = 1 and midpoint has x -
	x coordinate 0.5			coordinate = sum of roots $\div 2$
				A1 0.5 dep on M2
				M1 0.5 + 10 dep on previous A1 awarded
		(0.5, 10.5)		A1 10.5 dep on previous A1 awarded
	or			
	$y = (y-10)^2 + 4$		6	M1 Correct substitution of $y - 10$ for x
	$y^2 - 21y + 104 (= 0)$			M1 for reduction to 3 term quadratic
	(y-8)(y-13)(=0)			M1 Factorisation or correct use of quadratic formula
	y = 8, y = 13			A1 Correct values for y dep on M2
	x = 3, y = 13, x = -2, y = 8			M1 $(x=)13-10$ and $(x=)8-10$ or $(x \text{ mid})=10.5-10$
				dep on previous A1 awarded
		(0.5, 10.5)		A1 dep on previous A1 awarded
				Total 6 marks

21	$\sqrt{t} = \frac{x}{a}$ or $x^2 = (2a\sqrt{t})^2$ or		4	M1	Correct rearrangement for \sqrt{t} or correct
	$\sqrt{t} = \frac{x}{2a} \text{ or } x^2 = (2a\sqrt{t})^2 \text{ or}$ $x^4 = (2a\sqrt{t})^4 \text{ oe}$				expression for x^2 or x^4
				M1	Correct expressions for t or t ² or for at ² or 2at in
	$t = \left(\frac{x}{2a}\right)^2$ oe or $t^2 = \frac{x^4}{16a^4}$ oe				terms of x and a
	$y = a \left[\left(\frac{x}{2a} \right)^2 \right]^2 - 2a \left(\frac{x}{2a} \right)^2 \text{ oe}$			M1	For correct substitution of t and t^2 into expression for y
		$y = \frac{x^4}{16a^3} - \frac{x^2}{2a}$		A1	Fully correct answer in required form
		10 <i>a</i> 2 <i>a</i>			Total 4 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom