Please check the examination de	etails below before entering yo	ur candidate information
Candidate surname	Other	names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Thursday 18	June 2020)
Morning (Time: 2 hours)	Paper Referen	ce 4PM1/02R
Further Pure N Paper 2R	/lathematics	

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	The <i>n</i> th term of an arithmetic series A is a_n
	The <i>n</i> th term of a geometric series G is t_n

For these two series

$$a_1 = t_1$$
 $a_{10} = t_3 = 48$ $a_{10} = 4t_2$

Find

- (i) the common ratio of G,
- (ii) the common difference of A.

(Total for Question 1 is 6 marks)

(6)

2	$f(x) = x^3 + px + q$ where p and q are constants.	
	The remainder when $f(x)$ is divided by $(x - 1)$ is -12	
	The remainder when $f(x)$ is divided by $(x - 4)$ is 30	
	(a) Find the value of p and the value of q .	
		(6)
	Using your values of p and q	
	(b) show that $f(3) = 0$	(1)
	(c) Express $f(x)$ as a product of linear factors.	
	(c) Express $I(x)$ as a product of finear factors.	(3)
	(d) Hence solve the equation $f(x) = 0$	(4)
		(1)

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows the triangle ABC in which AB = 10 cm and AC = 12 cm. The point D lies on BC such that BD = 6 cm, DC = 2 cm and AD = x cm.

(a) Show that x = 11

(4)

(b) Find the area, in cm² to 3 significant figures, of triangle ADB.

(4)

4 (a) Complete the table of values for $y = 2x + 1 + \frac{2}{x^2}$

Give your answers to 2 decimal places where appropriate.

x	0.5	1	1.5	2	2.5	3	3.5
y		5			6.32		8.16

(2)

(b) On the grid opposite, draw the graph of
$$y = 2x + 1 + \frac{2}{x^2}$$
 for $0.5 \le x \le 3.5$

(2)

(c) Use your graph to obtain estimates, to 1 decimal place, of the roots of the equation

$$2x + \frac{2}{x^2} = 7 \quad \text{in the interval } 0.5 \leqslant x \leqslant 3.5$$

(2)

(d) By drawing a suitable straight line on the grid, obtain estimates, to 1 decimal place, of the roots of the equation

$$\frac{3x}{2} + \frac{2}{x^2} = 5 \quad \text{in the interval } 0.5 \leqslant x \leqslant 3.5$$

(5)

8

Question 4 continued *y* ↑ 12 − 10 -8 6 4 2 2 3 4

Turn over for a spare grid if you need to redraw your graph.

Question 4 continued

Question 4 continued

Only use this grid if you need to redraw your graph.

(Total for Question 4 is 11 marks)

rcm $O = \frac{2\pi}{3} \text{ radians}$ A

Diagram **NOT** accurately drawn

Figure 2

In Figure 2, AB and AC are tangents to a circle with centre O and radius r cm.

The points *B* and *C* lie on the circle so that *OBC* is a sector of this circle and $\angle BOC = \frac{2\pi}{3}$ radians.

Given that the area of the shaded region is 10 cm²,

find, to 3 significant figures, the value of r.

(8)

Diagram **NOT** accurately drawn

Figure 3

The curve C with equation $y = x^2 - 5x + 4$ crosses the x-axis at the points A and B, as shown in Figure 3

(a) Find the coordinates of A and the coordinates of B.

(3)

The tangent to C at A meets the tangent to C at B at the point T.

(b) Find the coordinates of *T*.

(6)

The normal to C at A meets the normal to C at B at the point N.

(c) Find the coordinates of N.

(3)

(d) Find the area of the quadrilateral ATBN.

(3)

	1							
		è						
				pÌ				
			3					
			4					
	Ì							
				á				
	a	۳	8	в			5	
	3	К		S				
		9	٥	ø	К		>	
					Ħ			
	Ч	н	4	н			2	
	2							
2	1	2					2	
5	2	1	2	۷	á		1	
	٦			È	٠			
	7	٦		٩	né		١	
	>	ø	ø	۲	4			
	e	۹	ø	ė	ú		5	
					m			
			4					
		ľ						
					2			
	S				3		\geq	
	à	2	\$	2	3		ζ	
>	Ś	2	<	2	3		2	
>	S	2	<	2	2		3	
	Ś	2		2	3		2	
>	3	2		2			3	
>	3	2					3	
	3						3	
	3						3	
	3						3	
	3						3	
	3						3	
							3	
							3	
							3	
							\ \ \ \	
							?	
							\ \ \	
							\ \ \	
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>								

Question 6 continued	

7	(a) Find the set of values of k for which the equation $kx^2 - 4x + 2k = 7$ has real roots	(4)
	Given that the roots of the equation $kx^2 - 4x + 2k = 7$ are α and β ,	
	(b) form a quadratic equation with roots $\frac{\alpha+1}{\alpha}$ and $\frac{\beta+1}{\beta}$	
	Give each coefficient in terms of k .	(8)
		(0)

18

Question 7 continued	

8 Solve the equation $\log_3 x - 2\log_x 3 = 1$	(7)

9	Given that		
		$x = e^{-t} \sin 2t$	
	show that		
		$d^2x - dx$	
		$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + 5x = 0$	(8)

Question 9 continued		

 $f(x) = 32x^3 - 33x + 1$

(a) Show that f(1) = 0

(1)

(b) Hence using an algebraic method solve f(x) = 0

(4)

Figure 4

The region R, shown shaded in Figure 4, is bounded by the curve C_1 with equation $y = \sqrt{x}$, by the curve C_2 with equation $y = \frac{1}{8x}$ and by the line with equation x = a

The curves C_1 and C_2 intersect at the point B, with x coordinate p, where p < a

(c) Find the value of p.

(2)

The region R is rotated through 360° about the x-axis to generate a solid with volume $\frac{27\pi}{64}$

(d) Use algebraic integration to find the value of a.

(7)

Question 10 continued

Question 10 continued			
	(Total for Question 10 is 14 marks)		
7	TOTAL FOR PAPER IS 100 MARKS		

